

RFIT-ASY-0147

BIOFIRE® Blood Culture Identification 2 (BCID2) Panel

Instructions for Use	https://www.biofiredx.com/e-labeling/ITI0048
Quick Guide	https://www.biofiredx.com/e-labeling/ITI0068
Safety Data Sheet (SDS)	https://www.biofiredx.com/e-labeling/ITI0088
Panel Pouch Module Software	https://www.biofiredx.com/e-labeling/ITIFA20BCID210
Summary of Safety and Performance (Applicable for EU Customers)	https://www.biofiredx.com/e-labeling/ITIBCID29954

Customer and Technical Support Information *For more information on how to	U.S. Customers	Phone: 1-800-735-6544 (toll free) E-mail: BioFireSupport@biomerieux.com Website: www.biofiredx.com
contact Customer and Technical Support, refer to Appendix B.	Outside of the U.S.	Contact the local bioMérieux sales representative or an authorized distributor

INTENDED PURPOSE

Intended Use

The BIOFIRE® Blood Culture Identification 2 (BCID2) Panel is a multiplexed nucleic acid test intended for use with BIOFIRE® FILMARRAY® 2.0 or BIOFIRE® FILMARRAY® Torch Systems for the simultaneous qualitative detection and identification of multiple bacterial and yeast nucleic acids and select genetic determinants associated with antimicrobial resistance. The BIOFIRE BCID2 Panel test is performed directly on blood culture samples identified as positive by a continuous monitoring blood culture system. Results are intended to be interpreted in conjunction with Gram stain results. The following organism types and subtypes are identified using the BIOFIRE BCID2 Panel:

	Gram Positive Bacteria	
Enterococcus faecalis	Staphylococcus spp.	Streptococcus spp.
Enterococcus faecium	Staphylococcus aureus	Streptococcus agalactiae (Group B)
Listeria monocytogenes	Staphylococcus epidermidis	Streptococcus pneumoniae
	Staphylococcus lugdunensis	Streptococcus pyogenes (Group A)
	Gram Negative Bacteria	
Acinetobacter calcoaceticus-baumannii compl	lex	Enterobacterales
Bacteroides fragilis		Enterobacter cloacae complex
Haemophilus influenzae		Escherichia coli
Neisseria meningitidis (encapsulated)		Klebsiella aerogenes
Pseudomonas aeruginosa		Klebsiella oxytoca
Stenotrophomonas maltophilia		Klebsiella pneumoniae group
		Proteus spp.
		Salmonella spp.
		Serratia marcescens
	Yeast	
Candida albicans	Candida krusei	Cryptococcus neoformans/gattii
Candida auris	Candida parapsilosis	

RFIT-ASY-0147

Candida glabrata Candida tropicalis

The BIOFIRE BCID2 Panel contains assays for the detection of genetic determinants associated with resistance to methicillin (*mecA/C* and *mecA/C* in conjunction with MREJ), vancomycin (*vanA* and *vanB*), ß-lactams including penicillins, cephalosporins, monobactams, and carbapenems (*bla*_{CTX-M}, *bla*_{IMP}, *bla*_{KPC}, *bla*_{NDM}, *bla*_{OXA48-like}, *bla*_{VIM}) to aid in the identification of potentially antimicrobial-resistant organisms in positive blood culture samples. In addition, the panel includes an assay for the detection of the mobilized genetic determinant *mcr-1*, an emerging marker of public health importance. The antimicrobial resistance gene or marker detected may or may not be associated with the agent responsible for disease. Negative results for these select antimicrobial resistance gene and marker assays do not indicate susceptibility, as multiple mechanisms of resistance to methicillin, vancomycin, ß-lactams, and colistin exist.

Antimicrobial Resistance Genes												
CTX-M	KPC	mecA/C	NDM	vanA/B								
IMP	mcr-1	mecA/C and MREJ (MRSA)	OXA-48-like	VIM								

The BIOFIRE BCID2 Panel is indicated as an aid in the diagnosis of specific agents of bloodstream infection and results should be used in conjunction with other clinical and laboratory findings. Positive results do not rule out co-infection with organisms not included in the BIOFIRE BCID2 Panel. The BIOFIRE BCID2 Panel is not intended to monitor treatment for bloodstream infection.

Subculturing of positive blood cultures is necessary to recover organisms for susceptibility testing and epidemiological typing, to identify organisms in the blood culture that are not detected by the BIOFIRE BCID2 Panel, and for determination of species detected but not identified within complexes, groups, or genera by the BIOFIRE BCID2 Panel assays.

Intended User and Use Environment

The BIOFIRE BCID2 Panel is intended for use by trained medical and laboratory professionals in a laboratory setting or under the supervision of a trained laboratory professional.

RFIT-ASY-0147

SUMMARY AND EXPLANATION OF THE TEST

Bloodstream infections (BSIs) occur when pathogenic organisms (e.g., bacteria or yeast) enter the bloodstream and cause disease. These infections are commonly identified by the growth of the pathogenic organism in blood culture. BSIs can lead to the development of sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response¹ to infection. Globally, over 30 million BSIs are estimated to occur each year, leading to approximately 19 million cases of sepsis and 5 million sepsis-related deaths². Timely diagnosis and administration of effective treatment can significantly reduce mortality, duration of hospital stays, and costs due to BSI and sepsis. The BIOFIRE BCID2 Panel tests a single positive blood culture sample to simultaneously provide results for multiple organisms and organism groups that cause BSIs and genetic markers associated with antimicrobial resistance. Rapid identification of the organism(s) in the blood culture, along with information about antimicrobial resistance gene status for select microorganisms, may aid the physician in making appropriate treatment decisions.

Summary of Detected Organisms

Gram-Positive Bacteria

Enterococcus faecalis and **faecium** are gram-positive facultative anaerobes that normally inhabit the gastrointestinal tract of humans, but are among the most common nosocomial pathogens³. Enterococcal infections include urinary tract infections, hepatobiliary sepsis, endocarditis, surgical wound infection, bloodstream infection, and neonatal sepsis. There are 28 species of *Enterococcus*³ and although at least 12 species have been shown to cause human disease, *E. faecalis* (80-90%) and *E. faecium* (5-15%) cause the majority of clinical infections⁴. Enterococci can carry vancomycin-resistance genes such as *vanA* and *vanB*. Infection with a vancomycin-resistant enterococcus (VRE) increases the risk of death to 75%, compared with 45% for infection with a susceptible strain³. Although *E. faecalis* is more pathogenic than *E. faecium*, the latter exhibits more resistance and is associated with the majority of VRE infections⁵.

Listeria monocytogenes, the causative agent of listeriosis, is a gram-positive bacillus that is ubiquitous in soil and water and can be found in the gastrointestinal tract of up to 5% of healthy adults^{6–8}. Only three of the 12 known serotypes of *L. monocytogenes* (1/2a, 1/2b, and 4b) account for more than 90% of human cases of listeriosis⁹. Listeriosis is considered the most severe bacterial foodborne infection due to its high mortality rate, despite early antibiotic treatment (11 - 60%). Populations at risk for developing invasive listeriosis include the immunosuppressed, pregnant women, neonates, fetuses, and the elderly^{6,7}. Invasive listeriosis can result in abortion, sepsis, and meningoencephalitis^{6,9}. BSIs can account for greater than 50% of invasive listeriosis cases with a mortality rate of up to 70% when associated with severe underlying conditions^{8,9}.

Staphylococcus spp. – Staphylococci are gram-positive cocci that are usually catalase positive and tend to appear as irregular, grape-like clusters on a Gram stain. Nearly all species in the genus are facultative anaerobes. *Staphylococcus* species are common colonizers of the skin and mucous membranes. They are opportunistic pathogens that can cause infection following breaks in the cutaneous epithelial barrier through trauma or medical interventions¹⁰. Diagnostically, the genus is divided between coagulase-positive staphylococci and coagulase-negative staphylococci (CoNS). Due to being commensal organisms, CoNS species are regularly isolated from clinical specimens and care must be taken to assess clinical significance to differentiate between contamination, colonization, and true infection.

Staphylococcus aureus is the most clinically relevant coagulase-positive *Staphylococcus* spp. and is capable of causing a wide range of diseases. *S. aureus* possesses extensive virulence factors, has various strategies to evade the host immune response, and has become resistant to many therapeutic agents. Second only to CoNS, *S. aureus* is a major cause of primary bloodstream infection in hospitals. It is estimated that approximately 40% of *S. aureus* isolates may be methicillin resistant (MRSA)¹¹. The primary mediator of methicillin resistance in staphylococci is the acquisition of the *mecA* or *mecC* genes encoded on the staphylococcal chromosome cassette *mec* (SCC*mec*), a mobile genetic element that can transfer between *Staphylococcus* spp.¹¹

RFIT-ASY-0147

Staphylococcus epidermidis is the most frequently isolated staphylococcal species colonizing the body surface. It is particularly prevalent in moist areas such as the axillae, inguinal, and perineal areas; anterior nares; and toe webs. It has been increasingly recognized as a nosocomial pathogen. *S. epidermidis* is the major cause of infections associated with prosthetic vascular grafts, prosthetic orthopedic devices, and cerebrospinal fluid shunts¹⁰. The pathogenesis of medical-device-related *S. epidermidis* infections is associated with its ability to establish highly resistant biofilms, which aid the bacteria's colonization on the surface of the artificial devices¹². *S. epidermidis* is the second-most-common pathogen that causes nosocomial bloodstream infection and is typically associated with the use of intravascular catheters¹³. In neonatal intensive care units, *S. epidermidis*, along with other CoNS, account for 46-75% of all late-onset BSIs in preterm infants¹⁴.

Staphylococcus lugdunensis is an integral part of the normal skin flora with the lower abdomen and extremities being the predominant niches. It is an uncommon contaminant of blood cultures and more similar to *S. aureus* than to other CoNS in terms of pathogenicity and virulence¹⁵. Fulminant cases of native-valve endocarditis, characterized by an aggressive clinical course with high mortality and septic shock, have been attributed to *S. lugdunensis* and speak to its virulence¹⁶. In addition, skin and soft tissue infections also represent a prominent portion of the total infections caused by *S. lugdunensis*¹⁷. Unlike most other CoNS, *S. lugdunensis* remains susceptible to a wide array of antimicrobial agents, although the acquisition of the SCC*mec* cassette confers resistance to β-lactam and strains resistant to aminoglycosides (via other mechanisms) have been reported sporadically¹⁶.

Streptococcus spp. – Streptococci are gram-positive, catalase-negative cocci that appear in chains or pairs on a Gram stain. *Streptococcus* species are frequently found as commensal bacteria on mucous membranes and are occasionally present as transient skin microbiota¹⁰. Streptococci have historically been grouped as β-hemolytic or non-β-hemolytic, pyogenic (pus-forming) or non-pyogenic, and also divided according to the presence of specific surface antigens (i.e., Lancefield grouping). Lancefield groups A, B, C, and G are pyogenic and most are also β-hemolytic¹⁰. Of these, the Group A streptococci (represented primarily by *S. pyogenes*) and the Group B streptococci (*S. agalactiae*) are the most common in BSIs. The non-pyogenic streptococci are subdivided into five groups (mitis, anginosus, salivarius, mutans, and bovis groups). The mitis, anginosus, and salivarius groups are also referred to as viridians streptococci; these bacteria produce no Lancefield antigens and are alpha-hemolytic or non-hemolytic. Viridans streptococci are also fairly common agents of BSI causing 0.5% of sepsis cases in non-neutropenic patients and up to 2% in neutropenic patients¹¹. *S. pneumoniae* has been classified into the mitis group but is often considered as its own separate group.

Streptococcus agalactiae (Group B *Streptococcus* or GBS) belongs to Lancefield group B and can cause both early-onset neonatal disease, characterized by sepsis and pneumonia within the first seven days of life, and late-onset disease with meningitis and sepsis between day seven and three months of age¹⁰. In adult patients, the spectrum of *S. agalactiae* infections includes BSI, pneumonia, meningitis, and endocarditis¹⁰.

Streptococcus pneumoniae colonizes the upper respiratory tract and is the most frequently isolated respiratory pathogen in community-acquired pneumonia. *S. pneumoniae* was responsible for approximately 31,000 invasive infections in the U.S. in 2017, leading to an estimated 3,590 deaths¹⁸. There are two licensed, multivalent pneumococcal vaccines in the US (PPV23 and PCV13) that are recommended for neonates, the immunocompromised, and those over the age of 65, and that help reduce the risk of both invasive disease and pneumococcal pneumonia by 50-80%¹⁹.

Streptococcus pyogenes (Group A *Streptococcus* or GAS) colonizes the human skin and upper respiratory tract, with these sites serving as primary focal sites of infections and principal reservoirs of transmission of these grampositive bacteria¹⁰. *S. pyogenes* possesses complex virulence mechanisms to avoid host defenses^{20,21} and is responsible for deep or invasive infections, especially bloodstream infection, sepsis, and deep soft tissue infections ¹⁰

Gram-Negative Bacteria

Acinetobacter calcoaceticus-baumannii complex organisms (A. baumannii, A. calcoaceticus, A. dijkshoorniae, A. nosocomialis (genomospecies 13TU), A. pittii (genomospecies 3), and A. seifertii) are related Acinetobacter species not

RFIT-ASY-0147

reliably differentiated from one another by some manual or automated phenotypic microbial identification systems. These organisms are ubiquitous, non-fermentative, and gram-negative coccobacilli that primarily act as opportunistic pathogens infecting critically ill patients. They are uncommon members of the normal skin flora. Nosocomial infections caused by *A. baumannii* are increasing in frequency²². Multi-drug resistant strains demonstrate resistance to most antibiotic classes, including carbapenems. Various carbapenem-hydrolyzing metallo-β-lactamases may also be carried by these bacteria²³.

Bacteroides fragilis is an obligately anaerobic, gram-negative, non-spore-forming rod that belongs to the family *Bacteroidaceae*²⁴. *Bacteroides* species, of which *B. fragilis* is the most commonly encountered, are part of the normal microbiota of the human colon and are host symbionts critical to metabolism and systemic immunity. However, they can cause significant infection if displaced into the bloodstream or surrounding tissue. *B. fragilis* is the most common anaerobic organism found in BSIs, in part due to its potent virulence factors^{25,26}. *Bacteroides* species have the highest resistance rates of all anaerobic pathogens due to intrinsic resistance to several classes of structurally unrelated antibiotics.

Enterobacterales - The order Enterobacterales is composed of seven families (Budviciaceae, Enterobacteriaceae, Erwiniaceae, Hafniaceae, Morganellaceae, Pectobacteriaceae, and Yersiniaceae)²⁷, many genera, and over 250 species of gram-negative, facultatively anaerobic rods and coccobacilli. While some genera and species within the order are harmless to humans, many are medically important and associated with BSI and other illnesses. Members of the Enterobacteriaceae family are among the most commonly recognized organisms seen in healthcare-associated infections. along with genera and species of Morganellaceae and Yersiniaceae. Erwiniaceae, Hafniaceae, and Budviciaceae are less common while species of *Pectobacteriaceae* are not generally isolated from humans. The emergence and spread of antimicrobial resistance in Enterobacteriaceae (and other Enterobacterales) has increased the complexity of treating BSI associated with the gram-negative bacteria. Resistance to third- and fourth-generation cephalosporins is mediated primarily by the production of extended-spectrum β-lactamases (ESBLs) and overproduction of AmpC β-lactamases. While the majority of Enterobacteriaceae remain susceptible to carbapenems, KPC-type carbapenemases are emerging and spreading (carbapenem-resistant *Enterobacteriaceae*; CRE) in certain locations within the United States and worldwide²⁸. As genomic technologies evolve, bacterial taxonomy is changing, and several genera that were formerly classified as Enterobacteriaceae were reclassified into new families in 2016²⁷. However, the BIOFIRE BCID2 Panel has been designed to identify nearly all clinically relevant (and some non-relevant) former and current species of Enterobacteriaceae as well as the other families and genera of Enterobacterales.

Enterobacter cloacae complex organisms (*Enterobacter cloacae*, *Enterobacter asburiae*, *Enterobacter hormaechei*, *Enterobacter kobei*, *Enterobacter ludwigii*, and *Enterobacter mori*) are gram-negative, rod-shaped bacteria. *E. cloacae* complex organisms have been implicated in numerous nosocomial infections, which are notable for their severity in ICU patients²⁹. *Enterobacter* spp. is the fourth most common gram-negative pathogen isolated from blood cultures in the USA (after *Klebsiella* spp., *E. coli*, and *Pseudomonas aeruginosa*), with *E. cloacae* being the most common species. A similar trend has also been observed in Latin America and Europe³⁰.

Escherichia coli are gram-negative bacteria that are part of the normal flora of the intestines of humans and animals. While most pathogenic *E. coli* infections are associated with gastrointestinal illness, certain strains may cause extraintestinal infections in healthy as well as immunocompromised individuals. These include urinary tract infections, BSIs, and meningitis. Overall, *E. coli* infections are responsible for approximately 5.6% of BSIs¹¹. As with other *Enterobacteriaceae*, extended-spectrum β-lactamases (ESBLs), including CTX-M and AmpC β-lactamases, and *Klebsiella pneumoniae* carbapenemase (KPC) pose a significant antibiotic resistance problem¹⁰. Moreover, the recently identified, plasmid-mediated genetic determinant, *mcr-1*, has been found primarily in *E. coli* and other *Enterobacteriaceae*. This gene marks the emergence of some pan-drug-resistant strains.

Klebsiella aerogenes, previously known as *Enterobacter aerogenes*, is a gram-negative, facultatively anaerobic, rod-shaped bacterium³¹. It is a nosocomial and opportunistic pathogen generally found in the gastrointestinal tract, urine, and skin of colonized patients. It can be spread by the hands of healthcare staff and contaminate bedpans and urinals. Specific antibiotic treatments, venous catheter insertions, and/or surgical procedures are all risk factors associated with *K. aerogenes* infection³².

Klebsiella oxytoca is an aerobic gram-negative, rod-shaped bacterium that is carried on mucosal surfaces (nasopharynx and bowel) and found in agricultural environments. Opportunistic infections due to *K. oxytoca* include soft tissue infections, urinary tract infections, pneumonia, and BSIs. An increasing proportion of *K. oxytoca* bloodstream infection isolates demonstrate resistance to extended-spectrum β-lactams, especially when there is a history of prior antibiotic use³³. Additionally, carbapenem resistance has been observed in nosocomial outbreaks of *K. oxytoca*³⁴.

The *Klebsiella pneumoniae* group includes three phylogroups classified as distinct species; *K. pneumoniae* (KPI), *K. quasipneumoniae* (KPII), and *K. variicola* (KPIII)^{35,36}. All three species have many of the same virulence factors and share biochemical and genetic similarities, which makes it difficult to distinguish *K. quasipneumoniae* and *K. variicola* from *K. pneumoniae* clinically or by standard culture methods³⁷. These organisms are gram-negative, rod-shaped bacteria that are found as part of the normal flora of the human mouth and skin³⁵. *K. pneumoniae* is associated most often with nosocomial infections in the elderly or immunocompromised³⁸. *Klebsiella* spp. are opportunistic pathogens accounting for ~8% of all nosocomial bacterial infections in the United States and in Europe³⁹. *K. pneumoniae* group species may carry the *Klebsiella pneumoniae* carbapenemase gene, *bla*KPC, which confers resistance to carbapenem antibiotics³³, as well as several other genetic determinants of resistance to various classes of antibiotics.

Proteus spp. are commonly isolated in the clinical laboratory, with *Proteus mirabilis* observed most frequently. Most infections (approximately 85%) are thought to be community acquired⁴⁰; however, nosocomial outbreaks have also occurred⁴¹. Antimicrobial resistance has become an increasing problem in *Proteus* infections, with approximately 32% of isolates producing extended-spectrum β-lactamases⁴².

Salmonella spp. are motile, gram-negative, facultatively anaerobic rods that are associated with infection following the consumption of contaminated meat, fresh produce, and manufactured products⁴³. Strains of *Salmonella* are categorized as typhoidal and non-typhoidal, corresponding to the particular disease syndromes they are related to. Strains of non-typhoidal *Salmonella* can be transferred from animals to humans and from humans to humans and usually cause gastrointestinal infections. Approximately 5% of individuals with gastrointestinal infections caused by non-typhoidal *Salmonella* will develop BSI, especially in immunocompromised patients⁴⁴. Strains of typhoidal *Salmonella*, on the other hand, can only be transferred from human to human and cause typhoid fever, a serious BSI commonly seen in the developing world.

Serratia marcescens is a gram-negative bacterium that is a common nosocomial pathogen and colonizer. *S. marcescens* is the primary pathogenic species of the *Serratia* genus. It is of particular concern due to its emerging antibiotic resistance to commonly used agents like β -lactams, aminoglycosides, carbapenems, and fluoroquinolones. Non-pigmented *S. marcescens* are more resistant to antibiotics and are associated with most outbreaks⁴⁵. Transmission may occur from person-to-person contact, via medical apparatus, intravenous fluids, or other solutions⁴⁶.

Haemophilus influenzae is a gram-negative coccobacillus, isolated exclusively from humans⁴⁷, that can be present as normal flora of the oropharynx and can cause infections when introduced into the lower respiratory tract^{48–50}. Strains of *H. influenzae* are divided into two groups based on the presence or absence of a capsular polysaccharide^{51,52}. Encapsulated strains are further divided into six serotypes (a through f). Prior to the widespread use of the *H. influenzae* type b (Hib) conjugate vaccines, Hib caused >80% of invasive *H. influenzae* infections, predominantly in children under the age of five^{51,52}. In areas of routine vaccination, the majority of invasive *H. influenzae* infections are caused by non-typeable strains and predominantly affect children under the age of one and the elderly ⁵¹, with a mortality rate of 13-20%⁵². Approximately 20-35% of isolated strains are resistant to amoxicillin⁵¹.

Neisseria meningitidis (Encapsulated) is a fastidious, aerobic, gram-negative diplococcus that is spread by mucus or respiratory droplets, often from asymptomatic carriers. Twelve different serotypes of encapsulated *N. meningitidis* (A, B, C, H, I, K, L, X, Y, Z, W135, and 29E) can be distinguished. Serotypes B, C, and Y are the most prevalent in developed countries and serogroup A is predominant in the rest of the world⁵³. The serotypes are determined by a polysaccharide capsule that aids bacterial survival inside the human host. *N. meningitidis* is the only species of *Neisseria* to produce a

RFIT-ASY-0147

capsule. However, it is estimated that ~16% of *N. meningitidis* bacteria are not encapsulated⁵⁴; such strains are commonly found as commensal bacteria in the nasopharyngeal tract. However, clinical studies have recovered disease-causing unencapsulated strains of *N. meningitidis* from both immunocompetent and immunocompromised patients.⁵⁵ BSI with *N. meningitidis* is associated with fever and a characteristic hemorrhagic rash that may be transient⁵⁶. The disease can progress extremely quickly (<24 hours) with hypotension, multi-organ dysfunction, shock, peripheral ischemia, and limb loss and has a mortality rate of approximately 5-10%⁵⁷.

Pseudomonas aeruginosa is an opportunistic, gram-negative pathogen that rarely causes disease in healthy individuals but can cause sepsis in patients with burn wounds, malignancies, immunodeficiency, or in preterm infants^{58,59}. *P. aeruginosa* is a leading cause of nosocomial infections and is responsible for 10% of all hospital-acquired infections⁶⁰. Mortality rates due to *P. aeruginosa* BSI are greater than 20%, and may be as high as 50% for intensive care unit patients and burn victims^{58,59}. *P. aeruginosa* is susceptible to a limited number of antibiotics (antipseudomonal penicillins and cephalosporins, carbapenems, fluoroquinolones, and ciprofloxacin)⁵⁸, and multi-drug resistant (MDR) *P. aeruginosa* infection is becoming an increasing problem in hospitals⁶⁰.

Stenotrophomonas maltophilia is a gram-negative, obligate aerobe. This rod-shaped, environmental bacterium is commonly isolated from plant rhizospheres, animals, food, and water sources⁶¹. Typically not pathogenic for healthy persons, it is a well-known opportunistic human pathogen. *S. maltophilia* can infect both children and adults. Hospital-acquired infections associated with substantial morbidity and mortality are increasing, particularly in the immunocompromised patient population. In addition, community-acquired *S. maltophilia* infections have been reported from patients that often presented some form of comorbidity (trauma, central venous catheter, prior antibiotic use, malignancy, HIV infection, etc.)⁶². Polymicrobial infections of *S. maltophilia* and *P. aeruginosa* have been observed in the respiratory tract of cystic fibrosis patients. *S. maltophilia* has also been found to be present with CoNS, *Corynebacterium* species, *Pseudomonas* species, *Acinetobacter* species, and *Candida* species in blood and soft tissue of hematopoietic stem cell transplantation recipients⁶³. *S. maltophilia* is intrinsically resistant to multiple classes of antibiotics.

Yeast

Candida species are yeasts that are ubiquitous in the environment and as members of the normal human microbiota, especially in the digestive tract and on mucous membranes. These fungi are important agents of opportunistic nosocomial infections ranging from superficial (e.g. oral thrush) to systemic (e.g. BSI). Candida spp. are the 4th most common cause of BSIs, having been detected in approximately 10% of cases in a large U.S. surveillance study¹¹. The mortality rate for Candida bloodstream infection is approximately 40% and they often occur in combination with other bacteria or a second Candida spp.⁶⁴. The five most common species causing BSIs are C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei. In addition, C. auris, an emerging fungus, has recently been identified as a causative pathogen of BSI⁶⁵.

C. albicans accounted for over 65% of all *Candida* BSI cases reported in North America, Latin America, Europe, Asia, and the Middle East from 1997 to 2003⁶⁶. Among the non-*C. albicans* species, *C. glabrata* is the most common cause of BSI in the United States, while *C. parapsilosis* and *C. tropicalis* are the major players in other countries⁶⁷. *Candida krusei* is well known as a fungal pathogen among patients with hematologic malignancies and among blood and marrow transplant recipients. It contributes to 2% to 4% of all *Candida* BSIs⁶⁸ with similar overall mortality as *C. albicans* (20–40%)⁶⁹. Less common *Candida* species may be misidentified as one of the five common species using standard laboratory culture methods as well as some molecular methods. The emergence of mass spectrometry using MALDI-TOF technology has shown promising results for yeast identification. However, the lack of sufficient mass spectrometry spectra of closely related species and of unusual species from suitable reference strains limits the ability of MALDI-TOF MS database for accurate identification of these species⁷⁰.

Candida auris was first reported in 2009 as an isolate from the external ear canal of a patient from Japan⁷¹. This report was followed by the first three cases of nosocomial BSI caused by *C. auris* in 2011 from South Korea⁶⁵. A collaborative project led by the US Centers for Disease Control and Prevention (CDC) described the multidrug-resistant (MDR) nature of *C. auris* and its global emergence as a nosocomial pathogen: 93% of the 54 isolates from this study were reported to be resistant to fluconazole, the standard antifungal drug of choice in many countries, 41% were resistant to two antifungal

REF

RFIT-ASY-0147

classes, and 4% were resistant to three classes⁷². The complexity of its MDR nature is compounded by how difficult it is to accurately identify *C. auris* by routine (non-molecular) identification systems in the laboratory^{73,74}.

Cryptococcus neoformans/gattii are fungi found in soil and bird droppings that can become pathogenic following their inhalation and hematogenous spread to the brain and meninges. *C. neoformans* is considered an opportunistic pathogen of immunocompromised individuals. It is the AIDS-defining illness in up to 50% of AIDS patients^{75,76}. *C. gattii* infections are relatively rare but appear to be increasing. While typically associated with tropical and subtropical climates, since the 1990s *C. gattii* infections have been reported in British Columbia, Canada, the U.S. Pacific Northwest region, the Northeastern US, and in Europe^{77–80}. In addition to those with reduced immune function, *C. gattii* can also cause disease in the immunocompetent, particularly in persons with underlying health conditions⁷⁵.

Antimicrobial Resistance Genes

CTX-M is a class A extended-spectrum β-lactamase (ESBL) that originated due to a mobilization of chromosomal genes (*bla*) from *Kluyvera* spp. and confers resistance to a broad spectrum of cephalosporins. This group of β-lactamases can be plasmid-borne and the *bla*_{CTX-M} gene may be found in multiple copies per cell within a variety of gram-negative bacteria. Phylogenetic analyses of CTX-M describes five main lineages or phylogroups (CTX-M groups 1, 2, 8, 9, and 25) and over 200 types or variants⁸¹. CTX-M ESBLs are predominantly found in the *Enterobacteriaceae* family. However, they have also been reported in other non-enteric, gram-negative bacteria such as *Pseudomonas aeruginosa*, *Stenotrophomonas maltophilia*, *Acinetobacter baumannii*, *Vibrio* spp. and *Aeromonas* spp. Over the last decade, CTX-M enzymes have overtaken other ESBLs, including TEM and SHV ESBL variants, in prevalence⁸².

IMP β-lactamases are plasmid-borne metallo-β-lactamases (MBLs) belonging to Ambler class B1 MBLs. More than 80 distinct IMP types have been identified which have the potential to confer different levels of antibiotic resistance to broad-spectrum β-lactams like carbapenems, cephamycins, and oxymino cephalosporins^{83,84}. MBLs hydrolyze almost all β-lactams, rendering ineffective products, resulting in bacterial resistance to this class of antibiotics⁸⁵. Carriage of a bla_{IMP} gene has been detected in strains of *Serratia marcescens*, *Klebsiella pneumoniae*, *P. aeruginosa*, *Escherichia coli*, and *Enterobacter cloacae*⁸⁶.

KPC – The *Klebsiella pneumoniae* carbapenemase gene (*bla*_{KPC} or referred to here as KPC), confers resistance to the carbapenem class of β-lactams and currently is thought to be the most common and rapidly emerging carbapenemase in the United States. KPCs are frequently carried on mobile genetic elements with the potential to spread between organisms. Though originally isolated from *Klebsiella pneumonia*e, the gene has since disseminated to other genera/species including *Acinetobacter, Pseudomonas, Enterobacter, Serratia, Salmonella, Escherichia coli, Klebsiella oxytoca*, and other *Enterobacteriaceae*. There are more than 40 known KPC variants that have been identified (named up to KPC-46), with the most commonly isolated types being KPC-2 and KPC-3 (<u>www.bldb.eu</u>)⁸⁷. Carbapenem-resistant *Enterobacteriaceae* (CRE) are increasingly important pathogens in the hospital setting. Limited treatment options exist for CRE and they are associated with high mortality rates. Those most at risk include patients receiving long courses of antibiotics and those with indwelling devices (e.g. ventilators, urinary catheters, or intravenous catheters)⁸⁸. Detection of KPCs using phenotypic susceptibility testing (e.g., MIC breakpoints or Modified Hodge Test) is very difficult, not only because other mechanisms of carbapenem-resistance exist, but also because KPC activity is regulated by multiple mechanisms that may not be accurately assessed *in vitro* resulting in incorrect susceptibility reporting^{89,90}. Alternatively, molecular methods (e.g., PCR) are increasingly being used to specifically identify KPC genes in clinical isolates⁹¹.

mcr-1 – Theplasmid-borne mobilized genetic determinant *mcr-1* is an emerging marker of public health importance. It is associated with elevated MICs to colistin, a last-resort drug for some multidrug-resistant infections⁹². To date, nine homologous *mcr* genes termed *mcr-1* through *mcr-9* have been identified in various *Enterobacteriaceae*⁹³. The *mcr-1* gene was first described in *E. coli* (strain SHP45) from a pig located in China in 2015. pHNSHP45, the plasmid containing *mcr-1*, is capable of not only transferring between *E. coli* strains at a very high rate but also of transferring into other *Enterobacteriaceae*⁹⁴. Mechanistically, *mcr* genes encode phosphoethanolamine transferases, which transfer a phosphoethanolamine residue to the bacterial lipid A and greatly reduces its affinity for colistin and related polymyxins⁹⁵.

REF

RFIT-ASY-0147

mecA/C – Methicillin-resistant (MR) staphylococci are a serious concern in both hospital-acquired and community-acquired infections. Few options exist for the treatment of these infections because the bacteria are resistant to both natural and semi-synthetic β-lactam antibiotics (e.g. oxacillin/methicillin)¹⁰. The primary mechanism of methicillin resistance is through the acquisition of the mecA gene that encodes a penicillin-binding protein (PBP2a) that has a low affinity for β-lactams. The mecA gene is carried on a chromosomally integrated mobile genetic element called the staphylococcal cassette chromosome mec (SCCmec). In 2011, an SCCmec type XI cassette carrying a divergent mecA homologue (mecC), which also confers methicillin resistance, was identified in Europe⁹⁶.

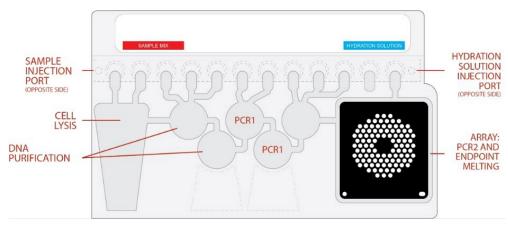
mecA/C and MREJ (MRSA) – The SCCmec cassette integrates into a specific region in the Staphylococcus genome^{97,98}. In S. aureus, this insertion creates MREJ (SCCmec right-extremity junction), and molecular identification of this junction region provides specific identification of an S. aureus that carries the SCCmec cassette. A combined molecular detection of mecA/C, MREJ, and S. aureus indicates MRSA. However, it is possible for S. aureus to carry SCCmec that has lost the mecA/C gene (an 'empty cassette', estimated to be 3.9-5% of methicillin-susceptible S. aureus^{99,100}); such a strain would be a methicillin-susceptible S. aureus but could be misidentified by molecular methods if there is a co-detection of an additional Staphylococcus spp. that carries the mecA/C gene. The junction, or point of insertion of the SCCmec cassette, can lead to a variety of MREJ types (i-xxi).

NDM – The New Delhi metallo-β-lactamase (NDM) is a plasmid-mediated enzyme that confers resistance to all current β-lactam antibiotics, with the exception of aztreonam^{101,102}. There are currently close to 40 different NDM types that may be found in a variety of gram-negative species, with NDM-1 recognized throughout the world. NDM is widely and rapidly disseminated throughout the *Enterobacteriaceae*, as well as other gram-negative bacteria^{102–106}. The plasmids encoding NDM are easily transferable and capable of wide rearrangement, suggestive of extensive transmission, as well as plasticity, amongst bacterial populations¹⁰³. Multi-drug resistant NDM-producing bacteria are now the most prevalent carbapenemase producers in Europe, and this trend is expected to continue worldwide.

OXA-48-like is an oxacillinase (OXA) β-lactamase that is part of a group of primarily plasmid-mediated enzymes that confer resistance to penicillins, cephalosporins, and carbapenems. The *bla*_{OXA-48} gene and its variants have been identified in various gram-negative bacteria in the *Enterobacteriaceae* family^{107,108}. OXA-48 hydrolyzes penicillins at a high level and carbapenems at a low level, with greater activity against imipenem than meropenem¹⁰⁷, and demonstrates extremely weak activity against expanded-spectrum cephalosporins¹⁰⁸. Several OXA-48-like variants maintain the hydrolytic properties and substrate profile of OXA-48 (-162, -181, -199, -204, -232, -244, -245, -252, -370, -484, -505, -514, -515, -519, -546, -547, and -566). Other variants retain activity against extended-spectrum cephalosporins but do not have the carbapenemase activity of OXA-48 (-163, -247, -405, -436, -438, -439, -517, -535, -538, -548, -549, -550, -551, -552, -553, -567, and -731).

vanA/B – Vancomycin resistance in *Enterococcus* spp. is conferred by the *vanA* and *vanB* genes. The prevalence of vancomycin-resistant enterococcus (VRE) has increased rapidly, with VRE accounting for 60% of *E. faecium* and 2% of *E. faecalis* isolated from the bloodstream^{3,11}. Infection with a VRE increases the risk of death to 75%, compared with 45% for infection with a susceptible strain³. Nine gene clusters associated with vancomycin resistance have been identified to date (*vanA*, *vanB*, *vanC*, *vanD*, *vanE*, *vanG*, *vanL*, *vanM*, and *vanN*), with *vanA* and *vanB* being the most common in clinical isolates¹⁰⁹. Both the *vanA* and *vanB* gene clusters are borne on mobile genetic elements (transposons) and can be located either on the chromosome or carried on a plasmid. Enterococci carrying *vanA* or *vanB* are resistant to high levels of vancomycin. Isolates carrying *vanA* are also resistant to high levels of teicoplanin¹¹⁰.

VIM – Verona Integron-Encoded Metallo-β-Lactamase (VIM) is an integron-encoded carbapenemase. There are reports of both plasmid and chromosomal localization of the *bla*_{VIM} integron¹¹¹, however, the majority of *bla*_{VIM} alleles are found on plasmids. There are over 60 distinct VIM types. VIMs are found mainly in gram-negative bacteria, including *Enterobacterales*, with a vast majority associated with various species of *Pseudomonas*.



PRINCIPLE OF THE PROCEDURE

The BIOFIRE BCID2 Panel pouch is a closed-system disposable that stores all the necessary reagents for sample preparation, polymerase chain reaction (PCR), and detection in order to isolate, amplify, and detect nucleic acid from multiple pathogens and antimicrobial resistance genes contained in blood culture samples identified as positive by a continuous monitoring blood culture system. After sample collection, the user injects Hydration Solution and sample combined with Sample Buffer into the pouch, places the pouch into a BIOFIRE® FILMARRAY® Instrument module, and starts a run. The entire run process takes about an hour. Additional detail can be found in the appropriate BIOFIRE® FILMARRAY® System Operator's Manual.

During a run, the BIOFIRE System:

- Lyses the sample by agitation (bead beating) in addition to chemical lysis mediated by the Sample Buffer.
- Extracts and purifies all nucleic acids from the sample using magnetic bead technology.
- Performs nested multiplex PCR by:
 - First performing a single, large volume, massively multiplexed reaction (PCR1)
 - Then performing multiple singleplex second-stage PCR reactions (PCR2) to amplify sequences within the PCR1 products
- Uses endpoint melting curve data to detect and generate a result for each target on the BIOFIRE BCID2 Panel array.

RFIT-ASY-0147

MATERIALS PROVIDED

The BIOFIRE BCID2 Panel contains materials consisting of primers, buffers, dNTPs, polymerase, molecular grade water, guanidinium chloride (50 - < 60%), Triton-X 100 (10 - < 20%), and LCGreen® Plus.

Each kit contains sufficient reagents to test 30 samples (30-test kit; RFIT-ASY-0147):

- Individually packaged BIOFIRE BCID2 Panel pouches
- Single-use Sample Buffer ampoules
- Single-use pre-filled Hydration Injection Vials (blue)
- Single-use Sample Injection Vials (red)
- Individually packaged Transfer Pipettes
- BIOFIRE BCID2 Panel Pouch Module Software
 This software is required to run the BIOFIRE BCID2 Panel and can be downloaded at https://www.biofiredx.com/e-labeling/ITIFA20BCID210 if not already installed on the BIOFIRE 2.0 or BIOFIRE Torch Systems.

MATERIALS REQUIRED BUT NOT PROVIDED

- BIOFIRE System including:
 - o BIOFIRE 2.0 or BIOFIRE Torch Systems including accompanying system-specific core software
 - BIOFIRE® Pouch Loading Station
- Syringe capable of measuring 0.2 mL (200 μL) sample volume OR alternate subculture device (e.g., needle-less safe subculture device) and sterile secondary container
- 10% bleach solution or a similar disinfectant

WARNINGS AND PRECAUTIONS

General Precautions

- 1. For in vitro diagnostic use only.
- 2. A trained healthcare professional should carefully interpret the results from the BIOFIRE BCID2 Panel in conjunction with a patient's signs and symptoms, results from Gram stain and other diagnostic tests, and any relevant epidemiological information.
- 3. BIOFIRE BCID2 Panel pouches are only for use with BIOFIRE 2.0 and BIOFIRE Torch systems.
- 4. Always check the expiration date on the pouch. Do not use a pouch after its expiration date.
- 5. Pouches are stored under vacuum in individually wrapped canisters. To preserve the integrity of the pouch vacuum for proper operation, be sure that an instrument/module will be available and operational before unwrapping any pouches for loading.

RFIT-ASY-0147

Safety Precautions

- 1. Wear appropriate Personal Protective Equipment (PPE), including (but not limited to) disposable, clean, powder-free gloves and lab coats. Protect skin, eyes, and mucus membranes. Change gloves often when handling reagents or samples.
- 2. Handle all samples and waste materials as if they were capable of transmitting infectious agents. Observe safety guidelines such as those outlined in:
 - CDC/NIH Biosafety in Microbiological and Biomedical Laboratories¹¹²
 - CLSI Document M29 Protection of Laboratory Workers from Occupationally Acquired Infections¹¹³
- 3. Follow your institution's safety procedures for handling biological samples.
- 4. Dispose of materials used in this test (including reagents, samples, and used buffer vials) according to federal, state, and local regulations.
- 5. Sample Buffer contains Guanidinium chloride and Triton X100.

The following statements apply.

- Health Hazards
 - Acute Toxicity, oral (Category 4)
 - H302 Harmful if swallowed.
 - Skin corrosion/irritation (Category 2)
 - H315 Causes skin irritation.
 - Serious eye damage/eye irritation (Category 1)
 - H318 Causes serious eye damage.
- Environment Hazards
 - Hazardous to the aquatic environment, acute aquatic hazard (Category 1)
 - H400 Very toxic to aquatic life.
 - Hazardous to the aquatic environment, long-term aquatic hazard (Category 1)
 - H410 Very toxic to aquatic life with long lasting effects.
 - Precautionary Statements
 - Prevention
 - P273 Avoid release to the environment.
 - P280 Wear protective gloves/protective clothing/eye protections/face protection.
 - Response
 - P332 + P313 If skin irritation occurs: Get medical advice/attention.
 - P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
 - P301 + P312 IF SWALLOWED: Call a POISON CENTRE/doctor if you feel unwell.
 - P337 + P313 If eye irritation persists: Get medical advice/attention.

Please refer to the BIOFIRE BCID2 Safety Data Sheet (SDS) for more information: https://www.BIOFIREdx.com/e-labeling/ITI0088.

RFIT-ASY-0147

6. Sample Buffer will form hazardous compounds and fumes when mixed with bleach or other disinfectants.

WARNING: Never add Bleach to Sample Buffer or sample waste.

- 7. Bleach, a recommended disinfectant, is corrosive and may cause severe irritation or damage to eyes and skin. Vapor or mist may irritate the respiratory tract. Bleach is harmful if swallowed or inhaled.
 - Eye contact: Hold eye open and rinse with water for 15–20 minutes. Remove contact lenses after the first 5 minutes and continue rinsing eye. Seek medical attention.
 - Skin contact: Immediately flush skin with plenty of water for at least 15 minutes. If irritation develops, seek medical attention.
 - Ingestion: Do not induce vomiting. Drink a glassful of water. If irritation develops, seek medical attention.
 - Please refer to the appropriate Safety Data Sheet (SDS) for more information.

Laboratory Precautions

1. Preventing organism contamination

Due to the sensitive nature of the BIOFIRE BCID2 Panel, it is important to guard against contamination of the sample and work area by carefully following the testing process outlined in this instruction document, including these guidelines:

- Positive blood culture samples contain high concentrations of organisms; careful adherence to the sample
 processing steps described in this document is recommended to avoid possible contamination. Samples should
 be processed in a clean biosafety cabinet if available, or according to local laboratory guidelines. If a biosafety
 cabinet is not used, a dead air box (e.g., AirClean PCR workstation), a splash shield (e.g., Bel-Art Scienceware
 Splash Shields), or a face shield can be used when preparing samples instead.
- It is recommended to avoid handling specimens or pouches in an area used to routinely process primary samples (excluding positive blood culture bottles), for bacterial or fungal Gram stains, rapid antigen testing, and/or cultures, unless the area is thoroughly cleaned first.
- Prior to processing specimens, thoroughly clean both the work area and the Pouch Loading Station using a suitable cleaner such as freshly prepared 10% bleach or a similar disinfectant. To avoid residue build-up and potential damage to the specimen or interference from disinfectants, wipe disinfected surfaces with water.
- Specimens and pouches should be handled and/or tested one at a time. Always change gloves and clean the work area between each pouch and specimen.
- Use clean gloves when removing Sample Buffer ampoules and Sample/Hydration Injection Vials from bulk packaging bags and reseal bulk packaging bags when not in use.

2. Preventing amplicon contamination

A common concern with PCR-based assays is false positive results caused by contamination of the work area with PCR amplicon. Because the BIOFIRE BCID2 Panel pouch is a closed system, the risk of amplicon contamination is low, provided that the pouches remain intact after the test is completed. Adhere to the following guidelines, in addition to those above, to prevent amplicon contamination:

- Discard used pouches in a biohazard container immediately after the run has completed.
- Avoid excessive handling of pouches after test runs.
- · Change gloves after handling a used pouch.

REF

RFIT-ASY-0147

Avoid exposing pouches to sharp edges or anything that might cause a puncture.

WARNING: If liquid is observed on the exterior of a pouch, the liquid and pouch should be immediately contained and discarded in a biohazard container. The instrument and workspace must be decontaminated as described in the appropriate BIOFIRE System Operator's Manual.

DO NOT PERFORM ADDITIONAL TESTING UNTIL THE AREA HAS BEEN DECONTAMINATED.

3. Blood culture media may contain non-viable organisms and/or nucleic acids at levels that can be detected by the BIOFIRE BCID2 Panel.

The presence of non-viable organisms and/or nucleic acids in blood culture media may lead to false positive test results. Increases in false positive results due to non-viable *Enterococcus*, *P. aeruginosa*, *Proteus* and *E. coli* have been previously identified in various media types; the organism involved and frequency of such occurrences may change in the future. Typically, these false positives present with more than one positive result because the BIOFIRE BCID2 Panel may also detect the organism that is growing in the culture bottle.

- Do not use blood culture media that contains charcoal.
- In some cases, the Gram stain result and results from the BIOFIRE BCID2 Panel may be discrepant (for
 example, detection of gram-positive cocci by the BIOFIRE BCID2 Panel when gram-positive cocci are not
 observed in the Gram stain). In these cases, the BIOFIRE BCID2 Panel results should be confirmed (e.g. by
 culture) before reporting, unless the result is concordant with other laboratory, epidemiological, or clinical
 findings.

Precaution Related to Public Health

Local, state, and federal/national regulations for notification of reportable disease are continually updated and include a number of organisms for surveillance and outbreak investigations. Several initiatives are also in place worldwide for notification and surveillance of antibiotic resistance, including carbapenemase-producing *Enterobacteriaceae* (CPE)/carbapenem-resistant *Enterobacteriaceae* (CRE) as well as colistin-resistant *Enterobacteriaceae* (CCRE).

The U.S. Centers for Disease Control and Prevention (CDC) recommends that when pathogens from reportable diseases are detected by a culture-independent diagnostic test (CIDT), the laboratory should facilitate obtaining the isolate or clinical materials for submission to the appropriate public health laboratory to aid in outbreak detection and epidemiological investigations.

Laboratories are responsible for following applicable regulations and should consult their local, state and/or national public health or reference laboratories for reporting as well as isolate and/or clinical sample submission guidelines.

Precaution Related to REACH Regulation (EC 1907/2006)

This statement only applies to countries within the European Union (EU) with regards to the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC 1907/2006):

It is recommended that all material associated with the test, including the material used to clean up spills, contaminated packaging, and/or unused and expired IVD tests, is incinerated. Please ensure that you follow local regulations regarding disposal.

RFIT-ASY-0147

REAGENT STORAGE, HANDLING, AND STABILITY

- 1. Store the test kit, including reagent pouches and buffers, at room temperature (15-25 °C).
- 2. Avoid storage of any materials near heating or cooling vents or in direct sunlight.
- 3. All kit components should be stored and used together. Do not use components from one kit with those of another kit. Discard any extra components from the kit after all pouches have been consumed.
- 4. Do not remove pouches from their packaging until a sample is ready to be tested. Once the pouch packaging has been opened, the pouch should be loaded as soon as possible (within approximately 30 minutes).
- 5. Once a pouch has been loaded, the test run should be started as soon as possible (within approximately 60 minutes). Do not expose a loaded pouch to temperatures above 40°C (104°F) prior to testing.

SAMPLE REQUIREMENTS

The following table describes the requirements for specimen collection, preparation, and handling that will help ensure accurate test results.

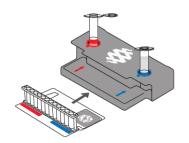
Table 1. Sample Requirements for the BIOFIRE BCID2 Panel

Specimen Type	Blood Culture Samples identified as positive by a continuous monitoring blood culture system.									
Minimum Sample Volume	0.2 mL (200 μL)									
	Specimens should be processed and tested with the BIOFIRE BCID2 Panel as soon as possible after positive bottle indication by a blood culture system.									
Sample Age	If not processed immediately, specimens can be kept:									
	 At room temperature for up to 24 hours (15–25 °C) after positivity 									
	In the blood culture system for up to 24 hours after positivity									

NOTE: Bleach can damage organisms/nucleic acids within the specimen, potentially causing false negative results. Contact between bleach and specimens during collection, disinfection, and testing procedures should be avoided.

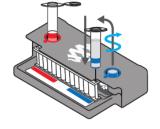
RFIT-ASY-0147

PROCEDURE


Use clean gloves and other Personal Protective Equipment (PPE) when handling pouches and samples. Only prepare one BIOFIRE BCID2 Panel pouch at a time and change gloves between samples and pouches. Once sample is added to the pouch, promptly transfer to the instrument to start the run. After the run is complete, discard the pouch in a biohazard container.

Step 1: Prepare Pouch

- 1. Thoroughly clean the work area and the Pouch Loading Station with freshly prepared 10% bleach (or suitable disinfectant) followed by a water rinse.
- 2. Remove the pouch from its vacuum-sealed package by tearing or cutting the notched outer packaging and opening the protective canister.


NOTE: The pouch may still be used even if the vacuum seal of the pouch is not intact. Attempt to hydrate the pouch using the steps in the Hydrate Pouch section. If hydration is successful, continue with the run. If hydration fails, discard the pouch and use a new pouch to test the sample.

- 3. Check the expiration date on the pouch. Do not use expired pouches.
- 4. Insert the pouch into the Pouch Loading Station, aligning the red and blue labels on the pouch with the red and blue arrows on the Pouch Loading Station.
- 5. Place a red-capped Sample Injection Vial into the red well of the Pouch Loading Station.
- 6. Place a blue-capped Hydration Injection Vial into the blue well of the Pouch Loading Station.

Step 2: Hydrate Pouch

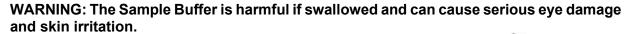
- 1. Unscrew the Hydration Injection Vial from the blue cap.
- 2. Remove the Hydration Injection Vial, leaving the blue cap in the Pouch Loading Station.
- 3. Insert the Hydration Injection Vial's cannula tip into the pouch hydration port located directly below the blue arrow of the Pouch Loading Station.
- 4. Forcefully push down in a firm and quick motion to puncture seal until a faint "pop" is heard and there is an ease in resistance. Wait as the correct volume of Hydration Solution is pulled into the pouch by vacuum.

- If the Hydration Solution is not automatically drawn into the pouch, repeat Step 2 to verify that the seal of the pouch hydration port was broken. If Hydration Solution is again not drawn into the pouch, discard the current pouch, retrieve a new pouch, and repeat from Step 1: Prepare Pouch.
- 5. Verify that the pouch has been hydrated.
 - Flip the barcode label down and check to see that fluid has entered the reagent wells (located at the base of the rigid plastic part of the pouch). Small air bubbles may be seen.
 - If the pouch fails to hydrate (dry reagents appear as white pellets), repeat Step 2 to verify that the seal of the pouch hydration port was broken. If Hydration Solution is still not drawn into the pouch, discard the current pouch, retrieve a new pouch, and repeat from *Step 1: Prepare Pouch*.

RFIT-ASY-0147

Step 3: Prepare Sample Mix

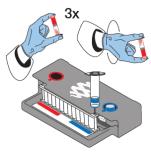
- 1. Add Sample Buffer to the Sample Injection Vial.
 - Hold the Sample Buffer ampoule with the tip facing up.

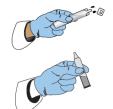

NOTE: Avoid touching the ampoule tip during handling, as this may introduce contamination.

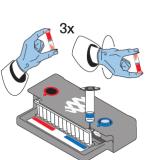
- To open the Sample Buffer Ampoule:
 - o If the ampoule has a plastic tab on the tip: Gently twist and remove tab at the tip of the Sample Buffer Ampoule.
 - o If the ampoule does not have a plastic tab at the tip: Firmly pinch at the textured plastic tab on the side of the ampoule until the seal snaps.

Invert the ampoule over the red-capped Sample Injection Vial and dispense Sample Buffer using a slow, forceful squeeze followed by a second squeeze.

NOTE: Avoid squeezing the ampoule additional times to avoid foaming.

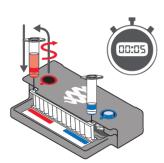

- 2. Thoroughly mix the positive blood culture bottle by inverting it several
- 3. Wipe the bottle septum with alcohol and air dry.
- 4. Using a syringe, withdraw 0.2 mL of blood culture sample through the bottle septum, taking care to avoid the formation of bubbles.
- 5. Add sample directly to Sample Buffer in the Sample Injection Vial. Discard syringe in an appropriate biohazard sharps container and tightly close the lid of the Sample Injection Vial.




Alternatively: Draw the desired amount of blood culture sample (> 0.2 mL) from the bottle into the syringe and transfer to a sterile secondary container OR remove blood culture sample (> 0.2 mL) using an alternate subculture device (e.g. needle-less safe subculture device) into a sterile secondary container. Draw the blood culture sample from the secondary container to the second line of the Transfer Pipette (0.2 mL) and add the sample to Sample Buffer in the Sample Injection Vial. Tightly close the lid of the Sample Injection Vial and discard the Transfer Pipette in a biohazard waste container.

NOTE: DO NOT use the Transfer Pipette to mix the sample once it is loaded into the Sample Injection Vial.

- 6. Remove the Sample Injection Vial from the Pouch Loading Station and invert the vial at least 3 times to mix.
- 7. Return the Sample Injection Vial to the red well of the Pouch Loading Station.


RFIT-ASY-0147

Step 4: Load Sample Mix

1. Slowly twist to unscrew the Sample Injection Vial from the red cap and wait for 5 seconds with the vial resting in the cap.

NOTE: Waiting 5 seconds decreases the risk of dripping and contamination from the sample.

- 2. Lift the Sample Injection Vial, leaving red cap in the well of the Pouch Loading Station, and insert the Sample Injection Vial cannula tip into the pouch sample port located directly below the red arrow of the Pouch Loading Station.
- 3. Forcefully push down in a firm and quick motion to puncture seal (a faint "pop" is heard) and sample is pulled into the pouch by vacuum.
- 4. Verify that the sample has been loaded.
 - Flip the barcode label down and check to see that fluid has entered the reagent well next to the sample loading port.
 - If the pouch fails to pull sample from the Sample Injection Vial, the pouch should be discarded. Retrieve a new pouch and repeat from Step 1: Prepare Pouch.

- 5. Discard the Sample Injection Vial and the Hydration Injection Vial in the appropriate biohazard sharps container.
- 6. Record the Sample ID in the provided area on the pouch label (or affix a barcoded Sample ID) and remove the pouch from the Pouch Loading Station.

Step 5: Run Pouch

The BIOFIRE® FILMARRAY® Software includes step-by-step, on-screen instructions that guide the operator through performing a run. Brief instructions for BIOFIRE 2.0 and BIOFIRE Torch Systems are given below. Refer to the appropriate BIOFIRE System Operator's Manual for more detailed instructions.

BIOFIRE 2.0

- 1. Ensure that the BIOFIRE 2.0 system (module[s] and computer) is powered on and the software is launched.
- 2. Follow on-screen instructions and procedures described in the Operator's Manual to place the pouch in a module, enter pouch, sample, and operator information.
- 3. Pouch identification (Lot Number and Serial Number), Pouch Type, and Protocol information will be automatically entered when the barcode is scanned. If it is not possible to scan the barcode, the pouch Lot Number, Serial Number, Pouch Type, and Protocol can be manually entered from the information provided on the pouch label into the appropriate fields. To reduce data entry errors, it is strongly recommended that the pouch information be entered by scanning the barcode.

NOTE: When selecting a Pouch Type manually, ensure that the Pouch Type matches the label on the BIOFIRE BCID2 Panel pouch.

- 4. Enter the Sample ID. The Sample ID can be entered manually or scanned in by using the barcode scanner when a barcoded Sample ID is used.
- 5. If necessary, select and/or confirm the appropriate protocol for your sample type from the Protocol drop-down list. The BIOFIRE BCID2 Panel has a single protocol available in the drop-down list.
- 6. Enter a username and password in the Name and Password fields.

RFIT-ASY-0147

NOTE: The font color of the username is red until the username is recognized by the software.

7. Review the entered run information on the screen. If correct, select Start Run.

Once the run has started, the screen displays a list of the steps being performed by the instrument and the number of minutes remaining in the run.

NOTE: The bead-beater apparatus can be heard as a high-pitched noise during the first minute of operation.

- 8. When the run is finished, follow the on-screen instructions to remove the pouch, then immediately discard it in a biohazard waste container.
- 9. The run file is automatically saved in the BIOFIRE Software database, and the test report can be viewed, printed, and/or saved as a PDF file.

BIOFIRE Torch

- 1. Ensure that the BIOFIRE Torch system is powered on.
- 2. Select an available module on the touch screen or scan the barcode on the pouch using the barcode scanner.
- 3. Pouch identification (Lot Number and Serial Number), Pouch Type, and Protocol information will be automatically entered when the barcode is scanned. If it is not possible to scan the barcode, the pouch Lot Number, Serial Number, Pouch Type, and Protocol can be manually entered from the information provided on the pouch label into the appropriate fields. To reduce data entry errors, it is strongly recommended that the pouch information be entered by scanning the barcode.

NOTE: When selecting a Pouch Type manually, ensure that the Pouch Type matches the label on the BIOFIRE BCID2 Panel pouch.

- 4. Enter the Sample ID. The Sample ID can be entered manually or scanned in by using the barcode scanner when a barcoded Sample ID is used.
- 5. Insert the pouch into the available module.
 - Ensure that the pouch fitment label is lying flat on top of the pouch and not folded over. As the pouch is inserted, the module will grab onto the pouch and pull it into the chamber.
- 6. If necessary, select and/or confirm the appropriate protocol for your sample type from the Protocol drop-down list. The BIOFIRE BCID2 Panel has a single protocol available in the drop-down list.
- 7. Enter a username and password, then select Next.

NOTE: The font color of the username is red until the username is recognized by the software.

8. Review the entered run information on the screen. If correct, select Start Run.

Once the run has started, the screen displays a list of the steps being performed by the instrument and the number of minutes remaining in the run.

NOTE: The bead-beater apparatus can be heard as a high-pitched noise during the first minute of operation.

- 9. At the end of the run, remove the partially ejected pouch, then immediately discard it in a biohazard waste container.
- 10. The run file is automatically saved in the BIOFIRE Software database, and the test report can be viewed, printed, and/or saved as a PDF file.

RFIT-ASY-0147

QUALITY CONTROL

Process Controls

Two process controls are included in each pouch:

1. DNA Process Control

The DNA Process Control assay targets a DNA transcript from the yeast *Schizosaccharomyces pombe*. The yeast is present in the pouch in a freeze-dried form and becomes rehydrated when sample is loaded. The control material is carried through all stages of the test process, including lysis, nucleic acid purification, PCR1, dilution, PCR2, and DNA melting. A positive control result indicates that all steps carried out in the BIOFIRE BCID2 Panel pouch were successful.

2. PCR2 Control

The PCR2 Control assay detects a DNA target that is dried into wells of the array along with the corresponding primers. A positive result indicates that PCR2 was successful.

Both control assays must be positive for the test run to pass. If the controls fail, the sample should be retested using a new pouch.

Monitoring Test System Performance

The BIOFIRE Software will automatically fail the run if the melting temperature (Tm) for either the DNA Process Control or the PCR2 Control is outside of an acceptable range (77.3-81.3°C for the DNA Process Control and 73.7-77.7°C for the PCR2 Control). If required by local, state, or accrediting organization quality control requirements, users can monitor the system by trending Tm values for the control assays and maintain records according to standard laboratory quality control practices. 116,117 Refer to the appropriate BIOFIRE System Operator's Manual for instructions on obtaining control assay Tm values. The PCR2 Control is used in several BIOFIRE® FILMARRAY® Pouch types and can, therefore, be used to monitor the system when multiple pouch types are used on the same BIOFIRE System or instrument.

External Controls

External controls should be used in accordance with laboratory protocols and the appropriate accrediting organization requirements, as applicable. Un-inoculated blood culture media can be used as an external negative control; however, external negative controls may not identify sporadic nucleic acid contamination in blood culture bottles. Previously characterized positive blood culture samples or samples spiked with well-characterized organisms can be used as external positive controls. Commercially produced control materials may also be available from other manufacturers; use according to the control manufacturer's instructions.

RFIT-ASY-0147

INTERPRETATION OF RESULTS

Assay Interpretation

When PCR2 is complete, the BIOFIRE Instrument performs a high-resolution DNA melting analysis on the PCR products and records the change in fluorescence signal generated in each well (for more information see appropriate BIOFIRE System Operator's Manual). The BIOFIRE Software then performs several analyses and assigns a final assay result. The steps in the analyses are described below.

Analysis of melt curves. The BIOFIRE Software evaluates the DNA melt curve for each well of the PCR2 array to determine if a PCR product was present in that well. If the melt profile indicates the presence of a PCR product, then the analysis software calculates the melting temperature (Tm) of the curve and compares it against the expected Tm range for the assay. If the software determines that the Tm falls inside the assay-specific Tm range, the melt curve is called positive. If the software determines that the melt curve is not in the appropriate Tm range, the melt curve is called negative.

Analysis of replicates. Once positive melt curves have been identified, the software evaluates the replicates for each assay to determine the assay result. For an assay to be called positive, two associated melt curves must be called positive, and both Tms must be similar. Assays that do not meet these criteria are called negative.

Organism and Antimicrobial Resistance Gene Interpretation

Each positive and negative assay result is interpreted by the BIOFIRE Software to provide results for the identification of specific bacteria, yeast, and antimicrobial resistance (AMR) genes as shown in Table 2.

For most species detected by the BIOFIRE BCID2 Panel, the organism is reported as Detected if a single corresponding assay is positive. Results may also be reported for groups or complexes of closely related species (*Acinetobacter calcoaceticus-baumannii* complex, *Enterobacter cloacae* complex, and *Klebsiella pneumoniae* group), genera containing multiple clinically relevant species (*Proteus* spp., *Salmonella* spp., *Staphylococcus* spp. and *Streptococcus* spp.), and for a variety of species within multiple genera of the order *Enterobacterales*. Results for these groups are reported qualitatively as Detected or Not Detected based on one assay, or in some cases, multiple relevant assays. Reporting of AMR genes with one or more applicable bacteria also requires interpretation based on more than one assay result, as discussed below.

NOTE: Polymicrobial blood cultures with four or more distinct organisms are possible but rare. If Detected results are reported for four or more organisms in a sample, a retest of the sample is recommended to confirm the polymicrobial result.

NOTE: In some cases, the Gram stain result and BIOFIRE BCID2 Panel results may be discrepant (for example, detection of gram-positive cocci by BIOFIRE BCID2 Panel when gram-positive cocci were not observed in the Gram stain). In these cases, the BIOFIRE BCID2 Panel results should be confirmed (e.g. by culture) before reporting, unless the result is concordant with other laboratory, epidemiological, or clinical findings.

Table 2. Analytes Detected by the BIOFIRE BCID2 Panel

radio arvanalytos botostoa by the bior inc boiler and										
Gram Positive Bacteria										
Enterococcus faecalis	Staphylococcus spp.	Streptococcus spp.								
Enterococcus faecium	Staphylococcus aureus	Streptococcus agalactiae (Group B)								
Listeria monocytogenes	Staphylococcus epidermidis	Streptococcus pneumoniae								
	Staphylococcus lugdunensis	Streptococcus pyogenes (Group A)								
	Gram Negative Bact	eria								
Acinetobacter calcoaceticus-b	aumannii complex	Enterobacterales								
Bacteroides fragilis		Enterobacter cloacae complex								

RFIT-ASY-0147

Haemophilus influenzae			Es	scherichia coli					
Neisseria meningitidis (encap	sulated)		KI	ebsiella aerogenes					
Pseudomonas aeruginosa			KI	ebsiella oxytoca					
Stenotrophomonas maltophili	a		KI	ebsiella pneumoniae group					
			Pr	roteus spp.					
			Salmonella spp.						
			Se	erratia marcescens					
		Yeast							
Candida albicans		Candida krusei	Candida krusei Cryptococcus neoformans/gattii						
Candida auris		Candida parapsilosis							
Candida glabrata		Candida tropicalis							
		Antimicrobial Resistance Ge	nes						
CTX-M	KPC	mecA/C	NDM	vanA/B					
IMP	mcr-1ª	mecA/C and MREJ (MRSA)	OXA-48-like	VIM					

^a As of February 2020, the United States Food and Drug Administration has not established or recognized minimum inhibitory concentration (MIC) breakpoints for colistin antimicrobial susceptibility testing (AST) related to mcr-1.

Results Interpretation for Gram-Positive Bacteria

The BIOFIRE BCID2 Panel contains assays for the specific detection of the major species associated with *Enterococcus* bloodstream infections (*Enterococcus faecium* and *Enterococcus faecalis*), *Listeria monocytogenes*, as well as clinically important Staphylococci (*S. aureus*, *S. epidermidis*, and *S. lugdunensis*) and Streptococci (*S. agalactiae*, *S. pneumoniae*, and *S. pyogenes*). Results for these gram-positive bacteria are reported as Detected or Not Detected based on an individual corresponding assay result. If the assay is positive the result will be Detected, and if the assay is negative, the result will be Not Detected.

Information about detection of specific subspecies, strains, isolates, or serotypes of gram-positive bacteria is provided in the Analytical Reactivity (Inclusivity) section (Table 87 - Table 97). Based on *in silico* analysis and empirical testing, each of the gram-positive species-specific assays is specific for detection of the indicated species with the exception of the Saureus assay, which will also amplify the closely related species of the *S. aureus*-complex (*S. argenteus* and *S. schweitzeri*), as noted in the Analytical Specificity (Cross-Reactivity and Exclusivity) section (Table 130).

In addition, the panel detects other species identified as *Staphylococcus* spp. and *Streptococcus* spp. based on the results of multiple assays, as described below.

Staphylococcus spp.

The BIOFIRE BCID2 Panel contains four assays for the detection of *Staphylococcus* species. Species-specific genus-level are included for the detection of *Staphylococcus aureus*, *Staphylococcus epidermidis*, and *Staphylococcus lugdunensis*. The fourth assay is a genus-level assay (Staphylococcus) designed to react with *Staphylococcus* species not specifically identified by one of the other assays on the panel (see Table 90). The BIOFIRE Software integrates the results of all four assays into a *Staphylococcus* spp. result as shown in Table 3. If all four assays are negative, the test result will be *Staphylococcus* spp. Not Detected. Alternatively, if any of the four assays are positive, the test result will be *Staphylococcus* spp. Detected and results for each species-specific assay will also be reported independently.

Based on testing and sequence analysis, it is predicted that five species within the *Staphylococcus* genus (*S. equorum*, *S. fluerettii*, *S. lentus*, *S. muscae*, and *S. rostri*) may not be detected by the panel, even at positive blood culture levels, due to sequence variation under the assay primers. Of these, only *S. equorum* has been reported to be isolated in a clinical setting. Sequence analysis predicts a low risk of cross-reactivity between the Staphylococcus assay and homologous sequences from *Aerococcus viridans*, *Enterococcus cecorum*, and *Granulicatella adiacens*, although only at very high concentrations.

RFIT-ASY-0147

Table 3. Assay and Results Interpretation for the Staphylococcus spp., Staphylococcus aureus, Staphylococcus epidermidis, and

Staphylococcus lugdunensis Test Results											
BIOFIRE BCID2 Panel Results	Staphylococcus assay	Saureus assay	Sepidermidis assay	Slugdunensis assay	Description						
Staphylococcus spp. Not Detected Staphylococcus aureus Not Detected Staphylococcus epidermidis Not Detected Staphylococcus lugdunensis Not Detected	Negative	Negative	Negative	Negative	No Staphylococcus species detected in the sample						
Staphylococcus spp. Detected Staphylococcus aureus Not Detected Staphylococcus epidermidis Not Detected Staphylococcus lugdunensis Not Detected	Positive	Negative	Negative	Negative	One or more <i>Staphylococcus</i> species detected in the sample (not S. aureus, S. epidermidis, or S. lugdunensis)						
Staphylococcus spp. Detected Staphylococcus aureus Detected Staphylococcus epidermidis Not Detected Staphylococcus lugdunensis Not Detected	Any result	Positive	Negative	Negative	Staphylococcus aureus detected in the sample Note: additional Staphylococcus species (not S. epidermidis or S. lugdunensis) may also be in the sample						
Staphylococcus spp. Detected Staphylococcus aureus Not Detected Staphylococcus epidermidis Detected Staphylococcus lugdunensis Not Detected	Any result	Negative	Positive	Negative	Staphylococcus epidermidis detected in the sample Note: additional Staphylococcus species (not S. aureus or S. lugdunensis) may also be in the sample						
Staphylococcus spp. Detected Staphylococcus aureus Not Detected Staphylococcus epidermidis Not Detected Staphylococcus lugdunensis Detected	Any result	Negative	Negative	Positive	Staphylococcus lugdunensis detected in the sample Note: additional Staphylococcus species (not S. aureus or S. epidermidis) may also be in the sample						

NOTE: Multiple Staphylococcus species assays may be positive in a single sample. If this occurs, the test result for each species with a positive assay will be reported as Detected.

Streptococcus spp.

The BIOFIRE BCID2 Panel contains four assays for the detection of *Streptococcus* species. Species-specific assays are included for the detection of Group A Strep (Spyogenes), Group B Strep (Sagalactiae), and *S. pneumoniae* (Spneumoniae). The fourth assay is a genus-level assay (Streptococcus) designed to react with most Viridans group and other *Streptococcus* species that are not specifically identified by one of the other assays on the panel. The BIOFIRE Software integrates the results of all four *Streptococcus* assays into a *Streptococcus* spp. result as shown in Table 4. If all four assays are negative, the test result will be *Streptococcus* spp. Not Detected. Alternatively, if any of the four assays are positive, the test result will be *Streptococcus* spp. Detected and results for each species-specific assay will also be reported independently.

Based on testing and analysis of available sequence data, all species within the *Streptococcus* genus will be amplified by one or more of the assays on the panel at positive blood culture levels. However, there are some species (*Streptococcus* equi, *S. entericus*, *S. halitosis*, *S.hyovaginalis*, *S. minor*, and *S. pantholopis*) and variant sequences identified as *S. minor*, *S. oralis*, *S. sobrinus*, *S. suis*, and *S. uberis* that may be amplified less efficiently than others and may not be detected if present in a blood culture at a concentration lower than approximately 7.6E+06 CFU/mL.

REF

RFIT-ASY-0147

Table 4. Assay and Results Interpretation for the Streptococcus spp., Streptococcus agalactiae (Group B), Streptococcus pneumoniae, and Streptococcus pyogenes (Group A) Test Results

Streptococcus pyogenes (Group A) Test Results											
BIOFIRE BCID2 Panel Results	Streptococcus Assay	Sagalactiae Assay	Spneumoniae Assay	Spyogenes Assay	Description						
Streptococcus spp. Not Detected Streptococcus agalactiae (Group B) Not Detected Streptococcus pneumoniae Not Detected Streptococcus pyogenes (Group A) Not Detected	Negative	Negative	Negative	Negative	No Streptococcus species detected in the sample						
Streptococcus spp. Detected Streptococcus agalactiae (Group B) Not Detected Streptococcus pneumoniae Not Detected Streptococcus pyogenes (Group A) Not Detected	Positive	Negative	Negative	Negative	One or more <i>Streptococcus</i> species detected in the sample (not S. agalactiae, S. pneumoniae, or S. pyogenes)						
Streptococcus spp. Detected Streptococcus agalactiae (Group B) Detected Streptococcus pneumoniae Not Detected Streptococcus pyogenes (Group A) Not Detected	Any result	Positive	Negative	Negative	Streptococcus agalactiae detected in the sample. Note: additional Streptococcus species (not S. pneumoniae or S. pyogenes) may also be in the sample						
Streptococcus spp. Detected Streptococcus agalactiae (Group B) Not Detected Streptococcus pneumoniae Detected Streptococcus pyogenes (Group A) Not Detected	Any result	Negative	Positive	Negative	Streptococcus pneumoniae detected in the sample Note: additional Streptococcus species (not S. agalactiae or S. pyogenes) may also be in the sample						
Streptococcus spp. Detected Streptococcus agalactiae (Group B) Not Detected Streptococcus pneumoniae Not Detected Streptococcus pyogenes (Group A) Detected	Any result	Negative	Negative	Positive	Streptococcus pyogenes detected in the sample Note: additional Streptococcus species (not S. agalactiae or S. pneumoniae) may also be in the sample						

NOTE: Multiple Streptococcus species assays may be positive in a single sample. If this occurs, the test result for each species with a positive assay will be reported as Detected.

Results Interpretation for Gram-Negative Bacteria

The BIOFIRE BCID2 Panel contains assays for the specific detection of many gram-negative species associated with bloodstream infections. Species are identified individually (*Bacteroides fragilis*, *Escherichia coli*, *Haemophilus influenzae*, *Klebsiella aerogenes*, *Klebsiella oxytoca*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Serratia marcescens*, and *Stenotrophomonas maltophilia*) or as complex, group, or genus results (*Acinetobacter calcoaceticus-baumannii* complex, *Enterobacter cloacae* complex, *Klebsiella pneumoniae* group, *Proteus* spp., and *Salmonella* spp.). Each of these is reported as Detected or Not Detected based on an individual corresponding assay result. If the assay is positive, the result will be Detected; if the assay is negative, the result will be Not Detected.

In addition, the panel detects a large number of additional gram-negative species identified as *Enterobacterales* based on the results of multiple assays, as described below.

Information about the detection of specific subspecies, strains, isolates, or serotypes of gram-negative bacteria is provided in the Analytical Reactivity (Inclusivity) section (Table 98 – Table 112). Based on testing and *in silico* analysis, each of the gram-negative assays is specific for detection of the indicated genus, complex, group or species with the exception of the cross-reactivities noted below and in the Analytical Specificity (Cross-Reactivity and Exclusivity) section (Table 130 and Table 131).

RFIT-ASY-0147

- Bacteroides xylanisolvens, a commensal species that naturally resides in the human intestine, can be
 misidentified as Bacteroides fragilis due to non-specific interaction with the Bfragilis assay. At particularly
 high concentrations, a cross-reactive interaction may also be seen with Bacteroides ovatus, a species of
 the B. fragilis group.
- The Enterobacter cloacae complex is comprised of multiple species (E. asburiae, E. cloacae, E. hormaechei, E. kobei, E. ludwigii and E. mori) that may all be identified as E. cloacae by phenotypic laboratory methods. The Ecloacae assay will detect each of these species and subspecies (e.g. Enterobacter hormaechei ssp. xiangfangensis) and will also cross-react with another closely related and more recently identified species, Enterobacter bugandensis. In addition, at high concentrations, the Ecloacae assay will cross-react with Trabulsiella guamensis due to non-specific interaction of the assay with a distantly related gene sequence in this species.
- The Ecoli assay cross-reacts with *Shigella* species (*S. boydii*, *S. dysenteriae*, *S. flexneri*, and *S. sonnei*); which are practically indistinguishable from *E. coli* by both phenotypic and genetic analyses but are only very rarely isolated from blood culture. Cross-reactivity has also been observed with *Escherichia fergusonii*, a rare but emerging veterinary and human pathogen, and *Escherichia albertii* (only at high concentration), a species more typically associated with gastrointestinal infections.
- Haemophilus aegyptius, generally considered a subgroup or biotype of Haemophilus influenzae, is
 difficult to differentiate by most laboratory methods and will be detected as Haemophilus influenzae by
 the BIOFIRE BCID2 Panel due to cross-reactivity.
- The Koxytoca assay will cross-react with two recently identified Klebsiella species, K. grimontii (identified in 2018; previously Klebsiella oxytoca phylogroup Ko6) and K. michiganensis (identified in 2013). The assay does not cross-react with other Klebsiella species; however, K. pneumoniae or Raoultella ornithinolytica can be misidentified as K. oxytoca by standard laboratory methods leading to instances of apparent false negative K. oxytoca results.
- The Salmonella assay will react with both species of Salmonella (S. bongori and S. enterica), including all known subspecies and serotypes. Although not detected when tested at a high concentration of ~7.0E+09 CFU/mL, sequence analysis predicts a low risk of cross-reactivity between this assay and a homologous gene sequence found in Plesiomonas shigelloides.
- The Proteus assay can cross-react with an insect-associated species (*Cosenzaea myxofaciens*) that was formerly classified as *Proteus myxofaciens*.

Enterobacterales

The BIOFIRE BCID2 Panel contains ten assays for the detection of most species within multiple families of the order *Enterobacterales*. Two assays (Enteric1 and Enteric2) are designed to react with relevant (and some non-relevant) species within the following families: *Enterobacteriaceae*, *Erwiniaceae*, *Hafniaceae*, *Morganellaceae*, *Yersiniaceae*, *Pectobacteriaceae*, and *Budviciaceae*; though species within the latter two families are generally not associated with human disease²⁷.

The BIOFIRE BCID2 Panel also contains eight other assays for the detection of specific species, genera, or groups of species within the *Enterobacterales* order including *Enterobacter cloacae* complex, *Escherichia coli*, *Klebsiella aerogenes*, *Klebsiella oxytoca*, *Klebsiella pneumoniae* group, *Proteus* spp., *Salmonella* spp., and *Serratia marcescens*.

The BIOFIRE Software integrates the results of all ten assays into an *Enterobacterales* result as shown with examples in Table 5. If all ten assays are negative, the test result will be *Enterobacterales* Not Detected. Alternatively, if any of the ten assays are positive, the test result will be *Enterobacterales* Detected and results for the genus, complex, group, or species-specific assays will also be reported independently.

REF

RFIT-ASY-0147

Based on testing and analysis of available sequence data, the Enteric1 and Enteric2 assays will amplify all *Enterobacteriaceae* evaluated, as well as most species of the other families within the *Enterobacterales* order. However, a few species of *Morganellaceae* (*Providencia heimbachae*, *Photorhabdus asymbiotica*, and *Arsenophonus nasoniae*) which are rarely or never isolated from human clinical samples, will not be detected. In addition, *Yersinia pseudotuberculosis* and *Mixta* (formerly *Pantoea*) *calida* and species with similar sequences may be amplified less efficiently than others and may not be detected if present in a blood culture at a concentration lower than approximately 1.1E+07 CFU/mL.

Table 5. Assay and Results Interpretation for the Enterobacterales Test Result

Table 5. Assay and Results Interpretation for the Enterobacterales Test Result											
BIOFIRE BCID2 Panel Results	Enteric1 and/or Enteric2 assay	Ecloacae assay	Ecoli assay	Kaerogenes assay	Koxytoca assay	Kpneumoniae assay	Proteus assay	Salmonella assay	Smarcescens assay	Description	
Enterobacterales Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	No Enterobacterales detected in the sample.	
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	One or more Enterobacterales detected in the sample (not E. cloacae complex, E. coli, K. aerogenes, K. oxytoca, K. pneumoniae group, Proteus spp., Salmonella spp., or S. marcescens)	
Enterobacterales Detected Enterobacter cloacae complex Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected	Any result	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg	One or more species of the <i>Enterobacter cloacae</i> complex detected in the sample Note: additional <i>Enterobacterales</i> may also be in the sample	
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected	Any result	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Escherichia coli detected in the sample Note: additional Enterobacterales may also be in the sample	
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Detected Klebsiella oxytoca Not Detected	Any result	Neg	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Klebsiella aerogenes detected in the sample	

REF

RFIT-ASY-0147

BIOFIRE BCID2 Panel Results	Enteric1 and/or Enteric2 assay	Ecloacae assay	Ecoli assay	Kaerogenes assay	Koxytoca assay	Kpneumoniae assay	Proteus assay	Salmonella assay	Smarcescens assay	Description
Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected										Note: additional Enterobacterales may also be in the sample
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Detected Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected	Any result	Neg	Neg	Neg	Pos	Neg	Neg	Neg	Neg	Klebsiella oxytoca detected in the sample Note: additional Enterobacterales may also be in the sample
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected	Any result	Neg	Neg	Neg	Neg	Pos	Neg	Neg	Neg	One or more species in the Klebsiella pneumoniae group detected in the sample Note: additional Enterobacterales may also be in the sample
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Not Detected Proteus spp. Detected Salmonella spp. Not Detected Serratia marcescens Not Detected	Any result	Neg	Neg	Neg	Neg	Neg	Pos	Neg	Neg	One or more <i>Proteus</i> species detected in the sample Note: additional Enterobacterales may also be in the sample
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Detected Serratia marcescens Not Detected	Any result	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Neg	One or more Salmonella species detected in the sample Note: additional Enterobacterales may also be in the sample
Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Detected	Any result	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Serratia marcescens detected in the sample Note: additional Enterobacterales may also be in the sample

NOTE: Multiple Enterobacterales assays may be positive in a single sample. If this occurs, the test result for each species with a positive assay will be reported as Detected.

REF

RFIT-ASY-0147

Results Interpretation for Antimicrobial Resistance (AMR) Genes

The BIOFIRE BCID2 Panel contains assays for the specific detection of several genetic determinants of resistance to multiple classes of antibiotics found in select gram-positive (*mecA/C*, *mecA/C*, and MREJ, and *vanA/B*) or gram-negative bacteria (CTX-M, IMP, KPC, *mcr-1*, NDM, OXA-48, and VIM). Results for the AMR genes are not reported unless an applicable bacterium is also detected, therefore the results are based on multiple assays, as described below.

The results for each of the antimicrobial resistance genes will be listed as:

- Detected when an applicable bacterium is detected AND the antimicrobial resistance gene assay(s) are positive.
- Not Detected when an applicable bacterium is detected AND the antimicrobial resistance gene assay(s) are negative.
- N/A when all applicable bacteria are Not Detected, regardless of the result for the antimicrobial resistance gene assay(s).

Each AMR gene result is associated with a single corresponding AMR gene assay [with the exception of the *mecA/C* and MREJ (MRSA) result] and one or more assay(s) for the detection of applicable bacteria, as indicated in Table 6, Table 7, Table 8, that provide an example of how to interpret results when a corresponding AMR gene is detected with an associated organism. Table 7 describes how to interpret a *vanA/B* AMR gene result with corresponding gram-positive bacteria while Table 8 describes how to interpret the KPC AMR gene result with corresponding gram-negative bacteria. All other AMR genes [with the exception of the *mecA/C* and MREJ (MRSA) result] follow these interpretation rules.

Information about the detection of specific AMR gene types is provided in the Analytical Reactivity (Inclusivity) section (Table 113 - Table 122). Overall, each AMR gene assay was found to detect the majority of AMR gene types based on testing and analysis of available sequence data. However, there are some types and variant sequences identified that may be amplified less efficiently or may not be detected (MREJ types xv, xviii, and xix; CTX-M-151; IMP-31, IMP-35, IMP-46, and IMP-63; OXA-54, OXA-416 and OXA-48-like types that lack carbapenemase activity; VIM-39, VIM-45, VIM-46, VIM-65, and VIM-67).

Information on cross-reactivity of AMR gene assays with related AMR genes or due to non-specific interactions is described in the Analytical Specificity (Cross-Reactivity and Exclusivity) section. Most AMR gene assays are specific for detection of the indicated AMR genes; however, cross-reactivity may be observed between AMR gene assays and related AMR genes (CTX-M with related *bla* genes and vanA/B with *vanM*) or due to non-specific interactions that are unlikely to be reported at blood culture titers (KPC with *Acinetobacter nosocomialis* and *Moraxella osloensis*) and/or in the absence of an applicable bacterium (CTX-M with *Acinetobacter schindleri*).

Table 6. Antimicrobial Resistance (AMR) Genes and Applicable Bacteria																
BIOFIRE BCID2 Panel AMR Gene Result	Enterococcus faecalis	Enterococcus faecium	Staphylococcus aureus	Staphylococcus epidermidis	Staphylococcus lugdunensis	Acinetobacter calcoaceticus- baumannii complex	Enterobacterales	Enterobacter cloacae complex	Escherichia coli	Klebsiella aerogenes	Klebsiella oxytoca	Klebsiella pneumoniae group	Proteus spp.	Salmonella spp.	Serratia marcescens	Pseudomonas aeruginosa
vanA/B	×	×														
mecA/C				×	×											
mecA/C and MREJ (MRSA)			×													
mcr-1								×	×	×	×	×		×		

BIOFIRE BCID2 Panel AMR Gene Result	Enterococcus faecalis	Enterococcus faecium	Staphylococcus aureus	Staphylococcus epidermidis	Staphylococcus lugdunensis	Acinetobacter calcoaceticus- baumannii complex	Enterobacterales	Enterobacter cloacae complex	Escherichia coli	Klebsiella aerogenes	Klebsiella oxytoca	Klebsiella pneumoniae group	Proteus spp.	Salmonella spp.	Serratia marcescens	Pseudomonas aeruginosa
CTX-M						×	×	×	×	×	×	×	×	×	×	×
IMP						×	×	×	×	×	×	×	×	×	×	×
KPC						×	×	×	×	×	×	×	×	×	×	×
NDM						×	×	×	×	×	×	×	×	×	×	×
OXA-48-like							×	×	×	×	×	×	×	×	×	
VIM						×	×	×	×	×	×	×	×	×	×	×

NOTE: Antimicrobial resistance can occur via multiple mechanisms. A Not Detected result for a genetic marker of antimicrobial resistance does not indicate susceptibility to associated antimicrobial drugs or drug classes. A Detected result for a genetic marker of antimicrobial resistance cannot be definitively linked to the microorganism(s) detected. Culture is required to obtain isolates for antimicrobial susceptibility testing, and BIOFIRE BCID2 Panel results should be used in conjunction with culture results for the determination of susceptibility or resistance.

Table 7. Possible Assay and Corresponding vanA/B Test Result

BIOFIRE BCID2 F	anel Test Result	Efaecium assay	Efaecalis assay	vanA/B assay
Enterococcus faecium Enterococcus faecalis vanA/B	Not Detected Not Detected N/A	Negative	Negative	Any result
Enterococcus faecium Enterococcus faecalis vanA/B	Detected Not Detected Not Detected	Positive	Negative	Negative
Enterococcus faecium Enterococcus faecalis vanA/B	Not Detected Detected Not Detected	Negative	Positive	Negative
Enterococcus faecium Enterococcus faecalis vanA/B	Detected Detected Not Detected	Positive	Positive	Negative
Enterococcus faecium Enterococcus faecalis vanA/B	Detected Not Detected Detected ^a	Positive	Negative	Positive
Enterococcus faecium Enterococcus faecalis vanA/B	Not Detected Detected Detected	Negative	Positive	Positive
Enterococcus faecium Enterococcus faecalis vanA/B	Detected Detected Detected ^{a,b}	Positive	Positive	Positive

^a Subculturing and AST testing is required in order to assign a resistant and/or susceptible phenotype to isolates recovered from the blood culture sample.

^b It is not possible to determine the species with which the *vanA/B* gene is associated.

REF

RFIT-ASY-0147

Table 8. Possible Assay Results and the Corresponding KPC Test Results (Example for Gram-Negative Antimicrobial Result Interpretation)

Table 8. Possible Assay Results and	the Cori	responai	ng KPC	est Kesi	ıits (Exai	npie for	Gram-Ne	gative A	ntimicroi	olal Kesu	lit interpr	etation)	
BIOFIRE BCID2 Panel Test Results	Acinetobacter assay	Enteric1 and/or Enteric2 assay	Ecloacae assay	Ecoli assay	Kaerogenes assay	Koxytoca assay	Kpneumoniae assay	Proteus assay	Salmonella assay	Smarcescens assay	Paeroginosa assay	KPC Assay	Description
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae group Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC N/A	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Any result	No applicable gram- negative bacteria detected in the sample. KPC results are not applicable (N/A)
Acinetobacter calcoaceticus-baumannii complex Detected Enterobacterales Detected Enterobacter cloacae complex Detected Escherichia coli Detected Klebsiella aerogenes Detected Klebsiella oxytoca Detected Klebsiella pneumoniae Detected Proteus spp. Detected Salmonella spp. Detected Serratia marcescens Detected Pseudomonas aeruginosa Detected KPC Not Detected	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Neg	More than one applicable gramnegative bacteria detected in the sample AND KPC not detected
Acinetobacter calcoaceticus-baumannii complex Detected Enterobacterales Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Acinetobacter calcoaceticus- baumannii complex species detected in the sample AND KPC detected

REF

RFIT-ASY-0147

BIOFIRE BCID2 Panel Test Results	Acinetobacter assay	Enteric1 and/or Enteric2 assay	Ecloacae assay	Ecoli assay	Kaerogenes assay	Koxytoca assay	Kpneumoniae assay	Proteus assay	Salmonella assay	Smarcescens assay	Paeroginosa assay	KPC Assay	Description
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Froteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	One or more Enterobacterales detected in the sample (not E. cloacae complex, E. coli, K. aerogenes, K. oxytoca, K. pneumoniae group, Proteus spp., Salmonella spp., or S. marcescens) AND KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Froteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Any result	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	One or more Enterobacterales (including species of the Enterobacter cloacae complex) detected in the sample AND KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Klebsiella pneumoniae Not Detected Salmonella spp. Not Detected Sarratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Any result	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	One or more Enterobacterales (including Escherichia coli) detected in the sample AND KPC detected

RFIT-ASY-0147

BIOFIRE BCID2 Panel Test Results	Acinetobacter assay	Enteric1 and/or Enteric2 assay	Ecloacae assay	Ecoli assay	Kaerogenes assay	Koxytoca assay	Kpneumoniae assay	Proteus assay	Salmonella assay	Smarcescens assay	Paeroginosa assay	KPC Assay	Description
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Any result	Neg	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Neg	Pos	One or more Enterobacterales (including Klebsiella aerogenes) detected in the sample AND KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Detected Klebsiella pneumoniae Not Detected Klebsiella spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Any result	Neg	Neg	Neg	Pos	Neg	Neg	Neg	Neg	Neg	Pos	One or more Enterobacterales (including Klebsiella oxytoca) detected in the sample AND KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Detected Proteus spp. Not Detected Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Any result	Neg	Neg	Neg	Neg	Pos	Neg	Neg	Neg	Neg	Pos	One or more Enterobacterales (including species in the Klebsiella pneumoniae group) detected in the sample AND KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacterales Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Proteus spp. Detected	Neg	Any result	Neg	Neg	Neg	Neg	Neg	Pos	Neg	Neg	Neg	Pos	One or more Enterobacterales (including Proteus species) detected in the sample AND

Page **32** of **121**

REF

RFIT-ASY-0147

BIOFIRE BCID2 Panel Test Results Salmonella spp. Not Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Acinetobacter assay	Enteric1 and/or Enteric2 assay	Ecloacae assay	Ecoli assay	Kaerogenes assay	Koxytoca assay	Kpneumoniae assay	Proteus assay	Salmonella assay	Smarcescens assay	Paeroginosa assay	KPC Assay	Description KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Proteus spp. Not Detected Salmonella spp. Detected Serratia marcescens Not Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Any result	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Neg	Neg	Pos	One or more Enterobacterales (including Salmonella species) detected in the sample AND KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Klebsiella pneumoniae Not Detected Salmonella spp. Not Detected Serratia marcescens Detected Pseudomonas aeruginosa Not Detected KPC Detected	Neg	Any result	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Neg	Pos	One or more Enterobacterales (including Serratia marcescens) detected in the sample AND KPC detected
Acinetobacter calcoaceticus-baumannii complex Not Detected Enterobacter cloacae complex Not Detected Escherichia coli Not Detected Klebsiella aerogenes Not Detected Klebsiella oxytoca Not Detected Klebsiella pneumoniae Not Detected Klebsiella pneumoniae Not Detected Salmonella spp. Not Detected Sarratia marcescens Not Detected Pseudomonas aeruginosa Detected KPC Detected	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Pos	Pos	Pseudomonas aeruginosa detected in the sample AND KPC detected

The *mecA/C* result is intended to aid in the identification of methicillin-resistant *Staphylococcus epidermidis* and *Staphylococcus lugdunensis*. When the Sepidermidis and/or Slugdunensis assay(s) are positive, the *mecA/C* result will be reported as Detected or Not Detected based on whether the mecA/C assay is positive or negative, respectively. The Saureus and Staphylococcus assays are not considered in the reporting of the *mecA/C* result, except for the *mecA/C* and MREJ (MRSA) result, which is dependent on both the *mecA/C* assay and the MREJ assay (see Table 10). Detection of *Staphylococcus aureus* and positive *mecA/C* and MREJ results is indicative of methicillin-resistant *Staphylococcus aureus* (MRSA).

Table 9. Assay and Results Interpretation for the mecA/C Test Result

BIOFIRE BCID2 Pa	nel Test Result	Sepidermidis	Slugdunensis	mecA/C assay
		assay	assay	uoouy
Staphylococcus epidermidis Staphylococcus lugdunensis mecA/C	Not Detected Not Detected N/A	Negative	Negative	Any result
Staphylococcus epidermidis Staphylococcus lugdunensis mecA/C	Detected Not Detected Not Detected	Positive	Negative	Negative
Staphylococcus epidermidis Staphylococcus lugdunensis mecA/C	Not Detected Detected Not Detected	Negative	Positive	Negative
Staphylococcus epidermidis Staphylococcus lugdunensis mecA/C	Detected Detected Not Detected	Positive	Positive	Negative
Staphylococcus epidermidis Staphylococcus lugdunensis mecA/C	Detected Not Detected Detected ^a	Positive	Negative	Positive
Staphylococcus epidermidis Staphylococcus lugdunensis mecA/C	Not Detected Detected Detected	Negative	Positive	Positive
Staphylococcus epidermidis Staphylococcus lugdunensis mecA/C	Detected Detected Detected ^{a,b}	Positive	Positive	Positive

a Subculturing and AST testing is required in order to assign a resistant and/or susceptible phenotype to isolates recovered from the blood culture sample.

Table 10. Possible Staphylococcus aureus Results and mecA/C and MREJ Assay Combinations for the mecA/C and MREJ (MRSA) Result

BIOFIRE BCID2 Pa	nel Test Result	Saureus assay	mecA/C assay	MREJ assay
Staphylococcus aureus mecA/C and MREJ (MRSA)	Not Detected N/A	Negative	Any Result	Any Result
Staphylococcus aureus mecA/C and MREJ (MRSA)	Detected Detected ^a	Positive	Positive	Positive
Staphylococcus aureus mecA/C and MREJ (MRSA)	Detected Not Detected	Positive	Negative	Negative
Staphylococcus aureus mecA/C and MREJ (MRSA)	Detected Not Detected	Positive	Positive	Negative
Staphylococcus aureus mecA/C and MREJ (MRSA)	Detected Not Detected	Positive	Negative	Positive

^a Subculturing and AST testing is required in order to assign a resistant and/or susceptible phenotype to isolates recovered from the blood culture sample.

NOTE: It is possible for the BIOFIRE BCID2 Panel to report both the mecA/C result and the mecA/C and MREJ (MRSA) result if Staphylococcus epidermidis and/or Staphylococcus lugdunensis are detected in the same sample as Staphylococcus aureus.

NOTE: It is possible to obtain a Detected result for *Staphylococcus aureus mecA/C* and MREJ (MRSA) using the BIOFIRE BCID2 Panel but to recover an isolate from culture that is characterized as methicillin sensitive *S. aureus* (MSSA) using phenotypic AST methods. This can occur when a sample contains a strain of *S. aureus* that carries the orfX gene (MREJ) with an empty *mecA/C* (phenotypically MSSA) in a co-culture with a second *Staphylococcus* species carrying the *mecA/C* gene. This may also be observed in instances of heterogeneous cultures of MRSA and MSSA.

^b It is not possible to determine the species with which the *mecA/C* gene is associated.

RFIT-ASY-0147

Results Interpretation for Yeast

Species-specific assays are included in the BIOFIRE BCID2 Panel for each of the five most common *Candida* species associated with BSI (*Candida albicans*, *Candida glabrata*, *Candida krusei*, *Candida parapsilosis*, and *Candida tropicalis*), the emerging pathogen *Candida auris*, and two species of *Cryptococcus* (*Cryptococcus neoformans/gattii*). Results for all yeast are reported as Detected or Not Detected based on an individual corresponding assay result. If the assay is positive the result will be Detected, and if the assay is negative, the result will be Not Detected.

Additional information about the detection of specific strains, isolates, or serotypes/genotypes of yeast is provided in the Analytical Reactivity (Inclusivity) section (Table 123 – Table 129). Based on *in silico* analysis and empirical testing, each assay is specific for the detection of the indicated species with the exceptions described below and in the Analytical Specificity (Cross-Reactivity and Exclusivity) section (Table 130 and Table 131).

- Candida glabrata is closely related to Candida bracarensis and Candida nivariensis, and they have been
 described together as the Candida glabrata complex. Misidentification of these species by laboratory
 methods does occur, and cross-reactivity between the Cglabrata assay and C. bracarensis or C.
 nivariensis may be observed.
- At positive blood culture levels, the Ckrusei assay may cross-react with related species of *Candida*, *Pichia*, *or Issatchenkia*, including *Candida inconspicua* and *Pichia* (*Candida*) *norvegensis*.

NOTE: Candida krusei is also known as Issatchenkia orientalis and Pichia kudriavzevkii.

- The assay for detection of C. parapsilosis cross-reacts with Candida tropicalis at high concentration, and
 the assay for detection of C. tropicalis can cross-react with C. parapsilosis at high concentration. Either
 cross-reactive interaction would produce a dual result of Candida parapsilosis Detected and Candida
 tropicalis Detected.
- The Cryptococcus assay (*Cryptococcus neoformans/gattii*) can cross-react with environmental or insect-associated species of *Cryptococcus* that are not implicated in human infection.

NOTE: Assays for the detection of Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis amplify gene targets within the mitochondrial genome, and the panel will not be able to detect 'petite' strains that have lost their mitochondrial DNA.

RFIT-ASY-0147

BIOFIRE BCID2 Panel Test Report

The BIOFIRE BCID2 Panel two-page test report (Figure 1) is automatically displayed upon completion of a run and can be printed or saved as a PDF file. Each report contains a Run Summary, a Result Summary, and a Run Details section.

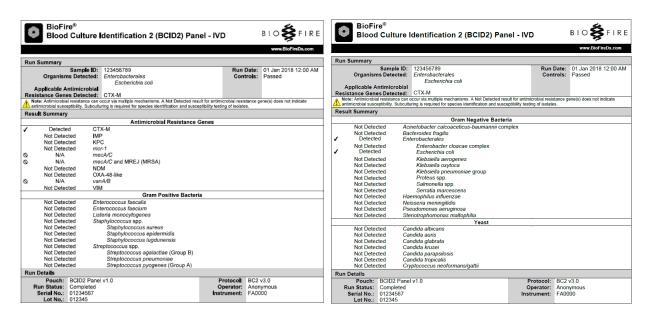


Figure 1. BIOFIRE BCID2 Panel Example Test Report (Page 1 - on left; Page 2 - on right)

Run Summary

The Run Summary section of the test report provides the Sample ID, time and date of the run, control results and an overall summary of the test results. Any organism with a Detected result will be listed in the corresponding field of the summary. If all of the organism assays were negative, then 'None' will be displayed in the Organisms Detected field. If an organism was detected and an applicable antimicrobial resistance gene assay was positive, the applicable antimicrobial resistance gene will be listed as Detected in the corresponding field of the summary. If all of the applicable antimicrobial resistance gene assays were negative, then 'None' will be displayed in the Applicable Antimicrobial Resistance Genes Detected field. Controls are listed as Passed, Failed, or Invalid. Table 11 provides additional information for each of the possible control field results.

RFIT-ASY-0147

Table 11. Interpretation of Controls Field on the BIOFIRE BCID2 Panel Test Report

Control Result	Explanation	Action
Passed	The run was successfully completed AND Both pouch controls were successful.	Report the results provided on the test report.
Failed	The run was successfully completed BUT At least one of the pouch controls (DNA Process Control and/or PCR2 Control) failed.	Repeat the test using a new pouch. If the error persists, contact Technical Support for further instruction.
Invalid	The controls are invalid because the run did not complete. (Typically this indicates a software or hardware error).	Note any error codes displayed during the run and the Run Status field in the Run Details section of the report. Refer to the appropriate BIOFIRE System Operator's Manual or contact Technical Support for further instruction. Once the error is resolved, repeat the test on the same module or on a different module.

Result Summary

The Result Summary section of the test report lists the result for each target tested by the panel. Possible results for each organism are Detected, Not Detected, or Invalid. Possible results for each antimicrobial resistance gene are Detected, Not detected, N/A, or Invalid. Table 12 provides an explanation for each interpretation and any follow-up necessary to obtain a final result.

Table 12. Reporting of Results and Required Actions

Result	Explanation	Action
Detected ^a	The run was successfully completed AND The pouch controls were successful (Passed) AND The assay(s) for the organism (or antimicrobial resistance gene) were POSITIVE ^a	Report results.
Not Detected	The run was successfully completed AND The pouch controls were successful (Passed) AND The assay(s) for the organism (or antimicrobial resistance gene) were NEGATIVE	Report results.
Invalid	The pouch controls were not successful (Failed) OR The run did not complete successfully (Run Status displayed as: Aborted, Incomplete, Instrument Error, or Software Error)	See Table 11 for instruction
N/A (Antimicrobial Resistance Genes only)	The run was successfully completed AND The pouch controls were successful (Passed) AND The assay(s) for the organism(s) associated with the antimicrobial resistance gene were NEGATIVE so the results of the antimicrobial resistance gene are not applicable to the test results.	Report results.

^a If four or more organisms are detected in a specimen, retesting is recommended to confirm the polymicrobial result.

Run Details

The **Run Details** section provides additional information about the run including pouch information (type, lot number, and serial number), Run Status (Completed, Incomplete, Aborted, Instrument Error, or Software Error), the protocol that was used to perform the test, the identity of the operator that performed the test, and the instrument used to perform the test.

RFIT-ASY-0147

Change Summary

It is possible to edit the Sample ID once a run has completed. If this information has been changed, an additional section called **Change Summary** will be added to the test report. This Change Summary section lists the field that was changed, the original entry, the revised entry, the operator that made the change, and the date that the change was made. Sample ID is the only field of the report that can be changed.

Change Summary											
Field	Changed To	Changed From	Operator	Date							
¹ Sample ID	Positive_example_XYZ	Positive _example	Jane Doe (JD)	16 Sept 2017							

Figure 2. BIOFIRE BCID2 Panel Change Summary Section in Report

RFIT-ASY-0147

LIMITATIONS

- 1. For prescription use only.
- 2. The performance of the BIOFIRE BCID2 Panel has not been established for the screening of blood or blood products.
- Results from this test must be correlated with clinical history, epidemiological data, and other data available to the clinician evaluating the patient.
- 4. BIOFIRE BCID2 Panel performance has only been established on the BIOFIRE 2.0 and BIOFIRE Torch systems.
- 5. The BIOFIRE BCID2 Panel is a qualitative test and does not provide a quantitative value for the organism(s) in the specimen.
- 6. This test has not been validated for testing samples other than human blood culture samples identified as positive by a continuous monitoring blood culture system.
- Blood culture samples must be tested within 24 hours of being flagged as positive by a continuous monitoring blood culture system.
- 8. All identification results provided by the BIOFIRE BCID2 Panel are intended to be interpreted in conjunction with results obtained from Gram stain of the positive blood culture. Gram reaction (gram-positive or gram-negative) and cellular morphology (gram-positive cocci in clusters, pairs, or chains, gram-negative rods) should be considered in correlation with the BIOFIRE BCID2 Panel results.
- 9. In some cases, the Gram stain result and results of the BIOFIRE BCID2 Panel may be discrepant (for example, detection of gram-positive cocci by the BIOFIRE BCID2 Panel when gram-positive cocci were not observed in the Gram stain). In these cases, the BIOFIRE BCID2 Panel results should be confirmed (e.g., by culture) before reporting, unless the result is concordant with other laboratory, epidemiological, or clinical findings.
- 10. The performance of this test was found to be equivalent for the specific blood culture bottle types evaluated in the clinical study (Table 18) and analytically (Table 84-Table 85). Performance for other blood culture bottle types was not evaluated.
- 11. This product should not be used to test blood culture media that contain charcoal. Charcoal containing media may contain non-viable organisms and/or nucleic acid at levels that can be detected by the BIOFIRE BCID2 Panel.
- 12. Any blood culture media may contain non-viable organisms and/or nucleic acid at levels that can be detected by the BIOFIRE BCID2 Panel leading to false positive test results. Typically, these false positives may present with more than one positive result because the BIOFIRE BCID2 Panel may also detect the organism that is growing in the culture bottle.
- 13. Only encapsulated strains of *N. meningitidis* will be detected by the BIOFIRE BCID2 Panel. Unencapsulated *N. meningitidis* will not be detected.
- 14. The BIOFIRE BCID2 Panel may not distinguish mixed cultures when two or more species of the same genus or organism group are present in a specimen (e.g., *Staphylococcus aureus* and *Staphylococcus hominis*).
- 15. In mixed cultures, the BIOFIRE BCID2 Panel may not identify all targeted organisms in the specimen, depending upon the concentration of each target present. In particular, false negative results for *Pseudomonas aeruginosa* or *Stenotrophomonas* spp. may occur if another organism is present in the blood culture. Conversely, standard subculture methods may also not identify all organisms in a mixed culture, depending upon the concentration and growth characteristics of each organism present.
- 16. Antimicrobial resistance can occur via multiple mechanisms. A Not Detected result for the antimicrobial resistance gene assays does not indicate antimicrobial susceptibility. Subculturing and standard susceptibility testing of isolates are required to determine antimicrobial susceptibility.
- 17. The results for the antimicrobial resistance gene assays do not specifically link the resistance gene to the applicable bacteria detected. In mixed cultures, the resistance gene may be associated with any of the applicable bacteria detected or an organism that was not detected by the panel.
- 18. Discrepancies between the BIOFIRE BCID2 Panel test result and other microbial identification methods may be caused by the inability to reliably differentiate closely related species based on standard phenotypic microbial identification methods or the design of other molecular assays.

- 19. The detection of bacterial, yeast, and antimicrobial resistance gene nucleic acid is dependent upon proper sample collection, handling, transportation, storage, and preparation. Failure to observe proper procedures in any one of these steps can lead to incorrect results. There is a risk of false positive or false negative values resulting from improperly collected, transported, or handled samples.
- 20. A negative BIOFIRE BCID2 Panel result does not exclude the possibility of bloodstream infection. Negative test results may occur from sequence variants in the region targeted by the assay, the presence of inhibitors, technical error, sample mix-up, or an infection caused by an organism not detected by the panel. Test results may also be affected by concurrent antibacterial/antifungal therapy or levels of organism in the sample that are below the limit of detection for the test (especially in the case of mixed cultures). Negative results should not be used as the sole basis for diagnosis, treatment, or other management decisions.
- 21. There is a risk of false positive values resulting from cross-contamination by target organisms, their nucleic acids or amplified product, or from non-specific signals in the assay. Particular attention should be given to the Laboratory Precautions noted under the Warnings and Precautions section.
- 22. False positives and false negatives can be the result of a variety of sources and causes. It is important that results be used in conjunction with other clinical, epidemiological, or laboratory information.
- 23. If four or more distinct organisms are detected in a specimen, retesting is recommended to confirm the polymicrobial result.
- 24. Cross-reactivity with organisms other than those listed in the Analytical Specificity section below may lead to erroneous results.
- 25. The effect of interfering substances has only been evaluated for those listed in the labeling. Interference by substances other than those described in the Interference section below could lead to erroneous results.
- 26. BIOFIRE BCID2 Panel assays can cross-react with several organisms, typically closely related or near-neighbor species to those detected by the panel. All confirmed or predicted cross-reactive species have been identified in Table 130 and Table 131 in the Analytical Specificity (Cross-Reactivity and Exclusivity) section below.
- 27. The BIOFIRE BCID2 Panel Ctropicalis assay may cross-react with high titers of *C. parapsilosis* present in a sample and the Cparapsilosis assay may cross-react with high titers of *C. tropicalis*. Detected results for both *C. tropicalis* and *C. parapsilosis* in the same sample may be due to cross-reactivity or may be due to both organisms being present in the blood culture.
- 28. Borderline oxacillin-resistant *Staphylococcus aureus* (BORSA) and moderately resistant *S. aureus* (MODSA) strains demonstrate reduced susceptibility to oxacillin due to hyperproduction of β-lactamases or modification of penicillin-binding proteins respectively. BORSA and MODSA strains do not contain the *mecA* or *mecC* gene. A *mecA/C* and MREJ (MRSA) Not Detected result will be reported by the BIOFIRE BCID2 Panel for these strains.
- 29. The *vanA/B* result is not reported in the absence of *Enterococcus faecalis* or *Enterococcus faecium* detection and will therefore not be reported for blood cultures containing other vancomycin-resistant Enterococci or vancomycin-resistant *Staphylococcus aureus* (VRSA).
- 30. Continuous monitoring blood culture systems may falsely signal positive in a low percentage of bottles (estimated to be near 1%) when no organisms are growing in the sample. This may be due to hyperleukocytosis (very high white blood cell counts).
- 31. The performance of the BIOFIRE BCID2 Panel has not been established for monitoring the treatment of infection with any of the panel organisms.

RFIT-ASY-0147

EXPECTED VALUES

In the prospective clinical evaluation of the BIOFIRE BCID2 Panel, 1074 positive blood culture (PBC) specimens were collected and tested at nine study sites across the United States and Europe over approximately eight months (October 2018 to May 2019). Expected value summaries (as determined by the BIOFIRE BCID2 Panel) are stratified by subject age in Table 13 and by specimen enrollment site in Table 14.

Table 13. Expected Value (as determined by the BIOFIRE BCID2 Panel) Summary by Age Group for PBC Specimens Collected during the BIOFIRE BCID2 Panel Prospective Clinical Evaluation (October 2018 to May 2019)

BIOFIRE BCID2 Panel Result	Overall <1 year 1-17 years 18-44 years (N=1074) (N=118) (N=143) (N=125)				4 years =257)		84 years N=333)	85+ years (N=98)						
	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV
				Gra	m-Po	sitive Bacte	ria							
Enterococcus faecalis	32	3.0%	4	3.4%	1	0.7%	4	3.2%	8	3.1%	14	4.2%	1	1.0%
Enterococcus faecium	30	2.8%	0	0%	0	0%	3	2.4%	10	3.9%	15	4.5%	2	2.0%
Listeria monocytogenes	3	0.3%	0	0%	0	0%	1	0.8%	1	0.4%	0	0%	1	1.0%
Staphylococcus spp.	484	45.1%	70	59.3%	68	47.6%	67	53.6%	111	43.2%	137	41.1%	31	31.6%
Staphylococcus aureus	151	14.1%	13	11.0%	28	19.6%	20	16.0%	35	13.6%	41	12.3%	14	14.3%
Staphylococcus epidermidis	250	23.3%	46	39.0%	25	17.5%	35	28.0%	58	22.6%	74	22.2%	12	12.2%
Staphylococcus lugdunensis	7	0.7%	0	0%	0	0%	1	0.8%	3	1.2%	3	0.9%	0	0%
Streptococcus spp.	123	11.5%	25	21.2%	28	19.6%	10	8.0%	23	8.9%	30	9.0%	7	7.1%
Streptococcus agalactiae (Group B)	9	0.8%	1	0.8%	0	0%	0	0%	1	0.4%	7	2.1%	0	0%
Streptococcus pneumoniae	26	2.4%	7	5.9%	7	4.9%	2	1.6%	3	1.2%	5	1.5%	2	2.0%
Streptococcus pyogenes (Group A)	13	1.2%	0	0%	10	7.0%	2	1.6%	0	0%	1	0.3%	0	0%
				Gran	n-Neg	gative Bacte	eria							
Acinetobacter calcoaceticus- baumannii complex	13	1.2%	0	0%	0	0%	2	1.6%	4	1.6%	7	2.1%	0	0%
Bacteroides fragilis	9	0.8%	0	0%	0	0%	0	0%	2	0.8%	5	1.5%	2	2.0%
Enterobacterales	323	30.1%	32	27.1%	30	21.0%	32	25.6%	78	30.4%	109	32.7%	42	42.9%
Enterobacter cloacae complex	16	1.5%	1	0.8%	0	0%	0	0%	5	1.9%	7	2.1%	3	3.1%
Escherichia coli	160	14.9%	16	13.6%	10	7.0%	13	10.4%	36	14.0%	61	18.3%	24	24.5%
Klebsiella aerogenes	2	0.2%	0	0%	0	0%	0	0%	2	0.8%	0	0%	0	0%
Klebsiella oxytoca	8	0.7%	1	0.8%	2	1.4%	0	0%	3	1.2%	1	0.3%	1	1.0%
Klebsiella pneumoniae group	55	5.1%	2	1.7%	1	0.7%	5	4.0%	20	7.8%	22	6.6%	5	5.1%
Proteus spp.	15	1.4%	0	0%	0	0%	0	0%	3	1.2%	8	2.4%	4	4.1%
Salmonella spp.	5	0.5%	2	1.7%	2	1.4%	0	0%	0	0%	1	0.3%	0	0%
Serratia marcescens	11	1.0%	0	0%	3	2.1%	2	1.6%	2	0.8%	2	0.6%	2	2.0%
Haemophilus influenzae	8	0.7%	2	1.7%	4	2.8%	0	0%	1	0.4%	1	0.3%	0	0%
Neisseria meningitidis	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Pseudomonas aeruginosa	31	2.9%	0	0%	3	2.1%	4	3.2%	8	3.1%	11	3.3%	5	5.1%

BIOFIRE BCID2 Panel Result	Overall (N=1074)		<1 year (N=118)		1-17 years (N=143)		18-44 years (N=125)		45-64 years (N=257)		65-84 years (N=333)		85+ years (N=98)	
	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV
Stenotrophomonas maltophilia	7	0.7%	2	1.7%	0	0%	0	0%	1	0.4%	4	1.2%	0	0%
AMR Genes														
CTX-M	46	4.3%	3	2.5%	1	0.7%	5	4.0%	9	3.5%	20	6.0%	8	8.2%
IMP	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
KPC	4	0.4%	0	0%	0	0%	0	0%	2	0.8%	1	0.3%	1	1.0%
NDM	1	0.1%	0	0%	0	0%	0	0%	1	0.4%	0	0%	0	0%
OXA-48-like	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
VIM	4	0.4%	1	0.8%	0	0%	0	0%	2	0.8%	1	0.3%	0	0%
mecA/C	195	18.2%	34	28.8%	19	13.3%	25	20.0%	44	17.1%	64	19.2%	9	9.2%
mecA/C and MREJ (MRSA)	54	5.0%	3	2.5%	9	6.3%	8	6.4%	12	4.7%	14	4.2%	8	8.2%
mcr-1	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
vanA/B	23	2.1%	0	0%	0	0%	3	2.4%	5	1.9%	13	3.9%	2	2.0%
						Yeast	•							
Candida albicans	13	1.2%	2	1.7%	1	0.7%	0	0%	2	0.8%	6	1.8%	2	2.0%
Candida auris	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Candida glabrata	11	1.0%	0	0%	0	0%	1	0.8%	4	1.6%	5	1.5%	1	1.0%
Candida krusei	2	0.2%	0	0%	0	0%	0	0%	0	0%	2	0.6%	0	0%
Candida parapsilosis	9	0.8%	0	0%	1	0.7%	1	0.8%	4	1.6%	3	0.9%	0	0%
Candida tropicalis	5	0.5%	0	0%	0	0%	0	0%	2	0.8%	3	0.9%	0	0%
Cryptococcus neoformans/gattii	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%

In addition, the observed multiple detections (as determined by the BIOFIRE BCID2 Panel) during the prospective clinical evaluation are presented in Table 15. At least one analyte was detected in a total of 976 PBC specimens (90.9% positivity rate; 976/1074). Polymicrobial detections of up to four organisms were observed.

Table 14. Expected Value (as determined by the BIOFIRE BCID2 Panel) Summary by Site for PBC Specimens Collected during the BIOFIRE BCID2 Panel Prospective Clinical Evaluation (October 2018 to May 2019)

								Clober 201	0 10 1	viay 2010										
BIOFIRE BCID2 Panel Result	Over	all (N=1074)	Site	1 (N=117)	Site	2 (N=98)	Site	3 (N=191)	Site	4 (N=84)	Site	5 (N=106)	Site	6 (N=118)	Site	7 (N=146)	Site	8 (N=104)	Site	9 (N=110)
BIOFIRE BCID2 Fallel Result	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV
	Gram-Positive Bacteria																			
Enterococcus faecalis	32	3.0%	2	1.7%	1	1.0%	3	1.6%	5	6.0%	7	6.6%	6	5.1%	2	1.4%	5	4.8%	1	0.9%
Enterococcus faecium	30	2.8%	0	0%	4	4.1%	5	2.6%	9	10.7%	0	0%	4	3.4%	0	0%	2	1.9%	6	5.5%
Listeria monocytogenes	3	0.3%	0	0%	1	1.0%	0	0%	1	1.2%	0	0%	0	0%	0	0%	1	1.0%	0	0%
Staphylococcus spp.	484	45.1%	57	48.7%	29	29.6%	93	48.7%	31	36.9%	54	50.9%	58	49.2%	85	58.2%	43	41.3%	34	30.9%
Staphylococcus aureus	151	14.1%	17	14.5%	9	9.2%	14	7.3%	14	16.7%	19	17.9%	22	18.6%	24	16.4%	18	17.3%	14	12.7%
Staphylococcus epidermidis	250	23.3%	30	25.6%	14	14.3%	59	30.9%	12	14.3%	27	25.5%	28	23.7%	43	29.5%	23	22.1%	14	12.7%
Staphylococcus lugdunensis	7	0.7%	0	0%	0	0%	2	1.0%	1	1.2%	1	0.9%	2	1.7%	1	0.7%	0	0%	0	0%
Streptococcus spp.	123	11.5%	23	19.7%	12	12.2%	8	4.2%	6	7.1%	18	17.0%	8	6.8%	26	17.8%	9	8.7%	13	11.8%
Streptococcus agalactiae (Group B)	9	0.8%	0	0%	1	1.0%	2	1.0%	0	0%	3	2.8%	0	0%	1	0.7%	2	1.9%	0	0%
Streptococcus pneumoniae	26	2.4%	9	7.7%	1	1.0%	0	0%	0	0%	3	2.8%	3	2.5%	4	2.7%	5	4.8%	1	0.9%

t-																				
BIOFIRE BCID2 Panel Result	Over	all (N=1074)	Site	1 (N=117)	Site	2 (N=98)	Site	3 (N=191)	Site	4 (N=84)	Site	5 (N=106)	Site	6 (N=118)	Site	7 (N=146)	Site	8 (N=104)	Site	9 (N=110)
BIOFINE BOIDZ Failer Result	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV	#	EV
Streptococcus pyogenes (Group A)	13	1.2%	7	6.0%	1	1.0%	0	0%	0	0%	2	1.9%	0	0%	2	1.4%	0	0%	1	0.9%
							Gr	am-Negativ	e Bac	teria										
Acinetobacter calcoaceticus- baumannii complex	13	1.2%	0	0%	0	0%	10	5.2%	0	0%	0	0%	1	0.8%	0	0%	2	1.9%	0	0%
Bacteroides fragilis	9	0.8%	0	0%	0	0%	2	1.0%	1	1.2%	1	0.9%	1	0.8%	0	0%	0	0%	4	3.6%
Enterobacterales	323	30.1%	19	16.2%	33	33.7%	50	26.2%	32	38.1%	34	32.1%	35	29.7%	44	30.1%	43	41.3%	33	30.0%
Enterobacter cloacae complex	16	1.5%	0	0%	4	4.1%	4	2.1%	1	1.2%	0	0%	1	0.8%	1	0.7%	3	2.9%	2	1.8%
Escherichia coli	160	14.9%	14	12.0%	20	20.4%	26	13.6%	8	9.5%	9	8.5%	17	14.4%	12	8.2%	27	26.0%	27	24.5%
Klebsiella aerogenes	2	0.2%	0	0%	0	0%	0	0%	0	0%	0	0%	1	0.8%	0	0%	0	0%	1	0.9%
Klebsiella oxytoca	8	0.7%	1	0.9%	0	0%	1	0.5%	3	3.6%	0	0%	1	0.8%	1	0.7%	1	1.0%	0	0%
Klebsiella pneumoniae group	55	5.1%	1	0.9%	4	4.1%	13	6.8%	7	8.3%	6	5.7%	12	10.2%	1	0.7%	5	4.8%	6	5.5%
Proteus spp.	15	1.4%	0	0%	3	3.1%	4	2.1%	0	0%	3	2.8%	0	0%	0	0%	5	4.8%	0	0%
Salmonella spp.	5	0.5%	2	1.7%	1	1.0%	0	0%	1	1.2%	0	0%	0	0%	1	0.7%	0	0%	0	0%
Serratia marcescens	11	1.0%	1	0.9%	1	1.0%	1	0.5%	0	0%	1	0.9%	0	0%	2	1.4%	3	2.9%	2	1.8%
Haemophilus influenzae	8	0.7%	4	3.4%	1	1.0%	0	0%	0	0%	1	0.9%	0	0%	2	1.4%	0	0%	0	0%
Neisseria meningitidis	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Pseudomonas aeruginosa	31	2.9%	1	0.9%	2	2.0%	5	2.6%	1	1.2%	2	1.9%	7	5.9%	4	2.7%	6	5.8%	3	2.7%
Stenotrophomonas maltophilia	7	0.7%	1	0.9%	0	0%	2	1.0%	2	2.4%	0	0%	1	0.8%	1	0.7%	0	0%	0	0%
								AMR Ge	enes											
CTX-M	46	4.3%	2	1.7%	7	7.1%	8	4.2%	7	8.3%	1	0.9%	3	2.5%	2	1.4%	10	9.6%	6	5.5%
IMP	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
KPC	4	0.4%	0	0%	0	0%	4	2.1%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
NDM	1	0.1%	0	0%	0	0%	1	0.5%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
OXA-48-like	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
VIM	4	0.4%	0	0%	0	0%	4	2.1%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
mecA/C	195	18.2%	23	19.7%	10	10.2%	50	26.2%	9	10.7%	19	17.9%	24	20.3%	30	20.5%	19	18.3%	11	10.0%
mecA/C and MREJ (MRSA)	54	5.0%	3	2.6%	4	4.1%	9	4.7%	5	6.0%	5	4.7%	8	6.8%	11	7.5%	2	1.9%	7	6.4%
mcr-1	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
vanA/B	23	2.1%	0	0%	3	3.1%	2	1.0%	9	10.7%	1	0.9%	4	3.4%	0	0%	0	0%	4	3.6%
								Yeas	t											
Candida albicans	13	1.2%	1	0.9%	3	3.1%	5	2.6%	0	0%	0	0%	0	0%	1	0.7%	2	1.9%	1	0.9%
Candida auris	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Candida glabrata	11	1.0%	0	0%	3	3.1%	0	0%	3	3.6%	0	0%	1	0.8%	0	0%	0	0%	4	3.6%
Candida krusei	2	0.2%	0	0%	0	0%	2	1.0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Candida parapsilosis	9	0.8%	1	0.9%	0	0%	4	2.1%	0	0%	1	0.9%	0	0%	0	0%	2	1.9%	1	0.9%
Candida tropicalis	5	0.5%	0	0%	1	1.0%	1	0.5%	0	0%	0	0%	0	0%	0	0%	3	2.9%	0	0%
Cryptococcus neoformans/gattii	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%

BIOMÉRIFUX

RFIT-ASY-0147

Table 15. Expected Values (multiple detections as determined by the BIOFIRE BCID2 Panel) for the BIOFIRE BCID2 Panel Prospective Clinical Evaluation (October 2018 to May 2019)

PIOSIDE POIDS Panal Organism Paggila	Expected Value (as determined by testing of 1074 prospective PBC specimens)						
BIOFIRE BCID2 Panel Organism Result	Number Detected and Reported	% of Total (% of Positives)					
Detected (at least one organism result)	976ª	90.9% (100%)					
One organism result	851	79.2% (87.2%)					
Two organism results	109	10.1% (11.2%)					
Three organism results	13	1.2% (1.3%)					
Four organism results	3	0.3% (0.3%)					

^a Removing the FP results due to the presence of nucleic acid from non-viable E. coli in specific lots of blood culture bottles results in 968 Detected (at least one organism result; 90.1% of total), 884 with one organism result (82.3% of total, 91.3% of positives), 72 with two organism results (6.7% of total, 7.4% of positives), nine with three organism results (0.8% of total, 0.9% of positives), and three with four organism results (0.3% of total, 0.3%

The BIOFIRE BCID2 Panel reported a total of 125 prospective specimens with discernible multiple organism detections (11.6% of all specimens, 125/1074; and 12.8% of positive specimens, 125/976). When omitting the 53 false positive (FP) results due to the presence of nucleic acid from non-viable E. coli in specific lots of blood culture bottles, the BIOFIRE BCID2 Panel reported a total of 84 prospective specimens with discernible multiple organism detections (7.8% of all specimens, 84/1074; and 8.7% of positive specimens, 84/968). The different types of multiple detections (categorized by gram stain classification) as reported by the BIOFIRE BCID2 Panel are presented in Table 16. The resulting co-detection analyte combinations are presented in Table 17. This table also indicates the number of prospective specimens with FP results for each co-detection combination, as well as the specific analytes that were discrepant. FP results were determined by comparison only to the primary comparator method (e.g. bacterial culture for organisms, and molecular methods for the antimicrobial resistance (AMR) genes, irrespective of host organism bacterial culture results).

Table 16. Expected Values (multiple detection types as determined by the BIOFIRE BCID2 Panel) for the BIOFIRE BCID2 Panel Prospective Clinical Evaluation (October 2018 to May 2019)

	Positive Specimens (N=976) ^a					
BIOFIRE BCID2 Panel Co-Detection Type	#	EV				
Gram Positive + Gram Positive	26	2.7%				
Gram Positive + Gram Negative	71	7.3%				
Gram Positive + Yeast	8	0.8%				
Gram Negative + Gram Negative	13	1.3%				
Gram Negative + Yeast	5	0.5%				
Yeast + Yeast	1	0.1%				
Gram Positive + Gram Negative + Yeast	1	0.1%				

a Removing the FP results due to the presence of nucleic acid from non-viable E. coli in specific lots of bioMérieux blood culture bottles results in 968 Positive Specimens; 34 Gram Positive + Gram Negative (3.5%), 11 Gram Negative + Gram Negative (1.1%), three Gram Negative + Yeast (0.3%), and one Gram Positive + Gram Negative + Yeast (0.1%).

				ned by the BIOFIRE BCII	D2 Panel, Prosp		
	BIOFIRE BCID2 F	Panel Distinct Co-Detection	on Combinations		Total	Number of	
Analyte 1	Analyte 2	Analyte 3	Analyte 4	AMR Gene(s)	Specimens with Co- Detections	Specimens with False Positive Co- Detections ^a	False Positive Analyte(s) [False Positive AMR Gene(s)]
E. faecalis	Staphylococcus spp., S. aureus	Staphylococcus spp., S. epidermidis	Enterobacterales, E. coli	mecA/C	1	0	-
E. faecalis	Staphylococcus spp., S. aureus	Staphylococcus spp., S. lugdunensis	Enterobacterales, Proteus spp.	CTX-M, mecA/C, mecA/C and MREJ (MRSA)	1	1	S. aureus, S. lugdunensis
E. faecalis	Staphylococcus spp., S. aureus	Enterobacterales, E. coli	Enterobacterales, Proteus spp.	mecA/C and MREJ (MRSA)	1	1	Staphylococcus/S. aureus, Proteus spp.
E. faecalis	Staphylococcus spp., S. epidermidis	Streptococcus spp.		mecA/C	1	1	Staphylococcus/S. epidermidis, Streptococcus spp.
E. faecalis	Staphylococcus spp., S. epidermidis	Enterobacterales		mecA/C, vanA/B	1	1	Enterobacterales ^b
E. faecalis	Enterobacterales	C. parapsilosis		-	1	1	C. parapsilosis
E. faecium	Staphylococcus spp., S. epidermidis	ACB complex		mecA/C, vanA/B	1	1	Staphylococcus/S. epidermidis
E. faecium	Staphylococcus spp., S. epidermidis	Enterobacterales, Proteus spp.		mecA/C	1	1	Staphylococcus/S. epidermidis
Staphylococcus spp.	Streptococcus spp.	Enterobacterales		-	1	1	Enterobacterales ^b
Staphylococcus spp.	ACB complex	Enterobacterales, K. pneumoniae group		CTX-M	1	1	Staphylococcus spp.
Staphylococcus spp., S. aureus	Streptococcus spp., S. agalactiae	Enterobacterales, Proteus spp.		-	1	0	-
Staphylococcus spp., S. epidermidis	Streptococcus spp.	Enterobacterales		mecA/C	1	1	S. epidermidis, Enterobacterales ^b
Staphylococcus spp., S. epidermidis	Streptococcus spp.	C. glabrata		mecA/C	1	1	C. glabrata
Staphylococcus spp., S. epidermidis	Streptococcus spp., S. pneumoniae	Enterobacterales		mecA/C	1	1	Enterobacterales ^b
Staphylococcus spp., S. epidermidis	Enterobacterales, K. pneumoniae group	P. aeruginosa		CTX-M, NDM, VIM, mecA/C	1	0	-
Streptococcus spp.	Enterobacterales, E. coli	Enterobacterales, K. pneumoniae group		-	1	0	-
E. faecalis	Staphylococcus spp., S. epidermidis			mecA/C	1	1	S. epidermidis
E. faecalis	Enterobacterales			-	1	1	Enterobacterales ^b
E. faecalis	Enterobacterales, K. oxytoca			-	1	0	-
E. faecalis	P. aeruginosa			-	1	0	-
E. faecium	Staphylococcus spp., S. epidermidis			mecA/C, vanA/B	2	2	Staphylococcus/S. epidermidis (2)
E. faecium	Staphylococcus spp., S. epidermidis			mecA/C	1	1	E. faecium
E. faecium	Streptococcus spp.			vanA/B	1	0	-
E. faecium	Enterobacterales			vanA/B	4	4	Enterobacterales (4) ^b
E. faecium	Enterobacterales, E. cloacae complex			-	1	1	E. faecium

	BIOFIRE BCID2 Pa	nel Distinct Co-Detecti	ion Combinations		T	Number of			
Analyte 1	Analyte 2	Analyte 3	Analyte 4	AMR Gene(s)	Total Specimens with Co- Detections	Specimens with False Positive Co- Detections ^a	False Positive Analyte(s) [False Positive AMR Gene(s)]		
E. faecium	Enterobacterales, E. coli			CTX-M	1	0	-		
E. faecium	Enterobacterales, K. pneumoniae group			CTX-M, vanA/B	1	1	E. faecium		
L. monocytogenes	Enterobacterales			-	1	1	Enterobacterales ^b		
Staphylococcus spp.	Streptococcus spp.			-	4	1	Staphylococcus spp. (1)		
Staphylococcus spp.	Enterobacterales			-	6	6	Enterobacterales (6)b		
Staphylococcus spp.	Enterobacterales, E. coli			CTX-M	1	1	Staphylococcus spp.		
Staphylococcus spp.	Enterobacterales, E. coli			-	1	1	Staphylococcus spp.		
Staphylococcus spp.	Enterobacterales, K. oxytoca			-	1	0	-		
Staphylococcus spp.	C. parapsilosis			-	1	0	-		
Staphylococcus spp., S. aureus	Staphylococcus spp., S. epidermidis			mecA/C, mecA/C and MREJ (MRSA)	2	2	S. epidermidis (2)		
Staphylococcus spp., S. aureus	Staphylococcus spp., S. epidermidis			mecA/C	3	2	S. epidermidis (2)		
Staphylococcus spp., S. aureus	Staphylococcus spp., S. epidermidis			-	1	1	S. epidermidis		
Staphylococcus spp., S. aureus	Streptococcus spp.			mecA/C and MREJ (MRSA)	1	0	-		
Staphylococcus spp., S. aureus	Enterobacterales			mecA/C and MREJ (MRSA)	3	2	Enterobacterales (2) ^b		
Staphylococcus spp., S. aureus	Enterobacterales			-	4	4	Enterobacterales (4) ^b		
Staphylococcus spp., S. epidermidis	Staphylococcus, S. lugdunensis			mecA/C	2	2	S. lugdunensis (2)		
Staphylococcus spp., S. epidermidis	Streptococcus spp.			mecA/C	4	3	Staphylococcus/S. epidermidis (1), S. epidermidis (1), Streptococcus spp. (1)		
Staphylococcus spp., S. epidermidis	Streptococcus spp.			-	1	0	-		
Staphylococcus spp., S. epidermidis	Streptococcus spp., S. pneumoniae			mecA/C	1	0	-		
Staphylococcus spp., S. epidermidis	Streptococcus spp., S. pneumoniae			-	1	0	-		
Staphylococcus spp., S. epidermidis	ACB complex			mecA/C	1	0	-		
Staphylococcus spp., S. epidermidis	Enterobacterales			mecA/C	10	10	S. epidermidis (2), Enterobacterales (10) ^b		
Staphylococcus spp., S. epidermidis	Enterobacterales			-	3	3	Enterobacterales (3) ^b		
Staphylococcus spp., S. epidermidis	Enterobacterales, E. coli			mecA/C	1	1	Enterobacterales/E. coli ^b		

	BIOFIRE BCID2 Par	nel Distinct Co-Detecti	on Combinations	T	Number of		
Analyte 1	Analyte 2	Analyte 3	Analyte 4	AMR Gene(s)	Total Specimens with Co- Detections	Specimens with False Positive Co- Detections	False Positive Analyte(s) [False Positive AMR Gene(s)]
Staphylococcus spp., S. epidermidis	Enterobacterales, E. coli			-	1	1	Staphylococcus/S. epidermidis
Staphylococcus spp., S. epidermidis	Enterobacterales, K. pneumoniae group			CTX-M, mecA/C	1	0	-
Staphylococcus spp., S. epidermidis	H. influenzae			-	1	0	-
Staphylococcus spp., S. epidermidis	P. aeruginosa			mecA/C	2	1	P. aeruginosa (1)
Staphylococcus spp., S. epidermidis	C. albicans			mecA/C	2	0	-
Staphylococcus spp., S. epidermidis	C. parapsilosis			mecA/C	1	1	S. epidermidis
Staphylococcus spp., S. epidermidis	C. tropicalis			mecA/C	2	0	-
Streptococcus spp.	B. fragilis			-	2	2	B. fragilis (2)
Streptococcus spp.	Enterobacterales			-	2	2	Enterobacterales (2) ^b
Streptococcus spp.	Enterobacterales, E. coli			-	2	1	Enterobacterales/E. coli (1) ^b
Streptococcus spp.	Enterobacterales, K. pneumoniae group			-	1	0	-
Streptococcus spp., S. agalactiae	C. krusei			-	1	0	-
Streptococcus spp., S. pneumoniae	Enterobacterales			-	3	3	Enterobacterales (3) ^b
Streptococcus spp., S. pneumoniae	H. influenzae			-	1	0	-
ACB complex	Enterobacterales, K. pneumoniae group			-	1	1	ACB complex
ACB complex	C. krusei			-	1	0	-
B. fragilis	Enterobacterales, E. coli			-	1	1	B. fragilis
Enterobacterales	H. influenzae			-	1	1	Enterobacterales ^b
Enterobacterales	P. aeruginosa			-	2	1	Enterobacterales (1) ^b
Enterobacterales	C. glabrata			-	2	2	Enterobacterales (2) ^b
Enterobacterales, E. cloacae complex	Enterobacterales, E. coli			-	1	0	-
Enterobacterales, E. cloacae complex	Enterobacterales, K. oxytoca			-	1	0	-
Enterobacterales, E. coli	Enterobacterales, K. aerogenes			CTX-M	1	0	-
Enterobacterales, E. coli	Enterobacterales, K. pneumoniae group			-	2	0	-
Enterobacterales, E. coli	P. aeruginosa			CTX-M	1	0	-
Enterobacterales, E. coli	P. aeruginosa			-	1	1	P. aeruginosa

REF

	BIOFIRE BCID2 F	Panel Distinct Co-Detecti	on Combinations		Total	Number of	
Analyte 1	Analyte 2	Analyte 3	Analyte 4	AMR Gene(s)	Total Specimens with Co- Detections	Specimens with False Positive Co- Detections ^a	False Positive Analyte(s) [False Positive AMR Gene(s)]
Enterobacterales, E. coli	C. tropicalis			-	1	0	-
Enterobacterales, K. pneumoniae group	P. aeruginosa			-	1	0	-
Enterobacterales, K. pneumoniae group	C. albicans			CTX-M, VIM	1	0	-
C. albicans	C. tropicalis			-	1	1	C. albicans
			Total Co-Detections		125	82	88/269°
	Total Co-Detections Total Double Detections				109	70	72/218
	Total Triple Detections				13	10	12/39
			Total Quadruple Detect	ions	3	2	4/12

^a Determined by comparison to bacterial culture for organisms, and molecular methods for AMR genes, irrespective of host organism bacterial culture results.

^b Forty-five (45) of the forty-six (46) FP results were due to the presence of nucleic acid from non-viable *E. coli* in the blood culture bottles.

^c Of the 88 discrepant analytes (out of 269 total analytes), all 88 (100%) were confirmed as being present in the specimen during discrepancy investigation; 45/88 (51.1%) were attributed to non-viable *E. coli* nucleic acid in bioMérieux BacT/ALERT blood culture media, and an additional 43/88 (48.9%) were confirmed using an independent molecular method.

PERFORMANCE CHARACTERISTICS

Clinical Performance

The clinical performance of the BIOFIRE BCID2 Panel was established during a prospective multi-center study that was further supplemented with archived and seeded PBC specimens.

Blood culture bottle types evaluated in the prospective clinical study included 11 different media from two different manufacturers as shown in Table 18. Equivalent overall performance was observed when results from the different media were compared; therefore, the data collected from all media types are combined for all analyses. One exception was the detection of 53 false positive *Enterobacterales* results from a limited number of lots of media identified to contain nucleic acid from non-viable *E. coli;* tables containing these data are footnoted.

Table 18. Blood Culture Media Types Evaluated in the BIOFIRE BCID2 Panel Prospective Clinical Evaluation

Blood			Prospective Study			Seeded Study				
Culture	Manufacturer and Product Name		Overall Performance ^a		N	Overall Performance ^a				
Media Type		N	Sensitivity/PPA	Specificity/NPA	N	Sensitivity/PPA	Specificity/NPA			
	BD Bactec Plus Aerobic/F	344	98.8%	99.8%	354	99.2%	100%			
A - malais	BD Standard 10 Aerobic/F	3	100%	100%	0	-	-			
Aerobic	bioMérieux BacT/ALERT FA plus bioMérieux BacT/ALERT SA	264	98.8%	99.0%	168	99.0%	100%			
	bioMérieux BacT/ALERT SA	21	100%	99.5%	0	-	-			
	BD Bactec Plus Anaerobic/F	86	99.1%	99.9%	15⁵	100%	100%			
	BD Bactec Standard Anaerobic/F	1	100%	-	0	-	-			
Anaerobic	BD Bactec Lytic/10 Anaerobic/F	187	99.6%	99.9%	0	-	-			
	bioMérieux BacT/ALERT FN plus	40	100%	99.8%	15	100%	100%			
	bioMérieux BacT/ALERT SN	83	97.9%	100%	0	-	-			
Pediatric/Low	BD Bactec Peds Plus/F	13	100%	99.6%	0	-	-			
Volume	bioMérieux BacT/ALERT PF plus	32	95.8%	98.8%	0	-	-			

^a Note that these calculations do not include the performance for the individual *Staphylococcus* species, individual *Streptococcus* species, or individual *Enterobacterales* interpretations, as the grouped *Staphylococcus* spp., *Streptococcus* spp., and *Enterobacterales* interpretations are included instead.

Nine geographically distinct study sites (seven in the US and two in the EU) participated in the prospective clinical evaluation from October 2018 to May 2019. A total of 11 pouch lots were used for testing.

A total of 1093 residual PBC specimens were acquired for the prospective clinical study. At two of the US sites, 69 specimens enrolled between October 2018 and February 2019 were collected and immediately frozen for later testing at the source laboratory. The remaining 1024 specimens were collected and tested fresh. No difference in performance was observed when fresh and frozen specimen results were compared. Therefore, the data collected from 69 valid frozen specimens are combined with data from the valid 1005 fresh specimens for all analyses.

Nineteen (19) specimens were excluded from the final data analysis. The most common reason for specimen exclusion was that the specimen was found to not meet the inclusion criteria after the specimen was enrolled, most often due to the specimen being tested with the BIOFIRE BCID2 Panel outside of the 24-hour window following positive indication by the continuous monitoring blood culture system.

For the prospective study, the performance of the BIOFIRE BCID2 Panel was evaluated by comparing the test result for each analyte with the appropriate comparator/reference methods shown in Table 19.

^b Bacteroides fragilis only.

REF

RFIT-ASY-0147

Table 19. Comparator Methods for the Prospective BIOFIRE BCID2 Panel Clinical Evaluation

BIOFIRE BCID2 Panel Result	Reference / Comparator Method(s)				
Bacteria and Cryptococcus	Standard manual and automated microbiological/biochemical identification methods				
	(performed for SOC and abstracted from the subject medical chart)				
Condido anosias	SOC identification for genus level				
Candida species	followed by PCR & sequencing of isolates for species identification				
	Method 1 – Assessment of BIOFIRE BCID2 Panel performance				
	(i) One PCR assay performed directly from PBC followed by sequencing of PCR amplicon				
	(CTX-M, IMP, KPC, NDM, OXA-48 like, VIM, and <i>mcr-1</i>)				
	(ii) Commercially available FDA-cleared and CE-marked molecular IVD assays performed on PBC (mecA/C, mecA/C and MREJ (MRSA), KPC, and vanA/B)				
AMR Genes	Method 2 – Assessment of genotype concordance				
	PCR & sequencing for specific resistance gene from applicable cultured isolates				
	Method 3 – Assessment of phenotype concordance				
	Phenotypic AST of applicable cultured isolates				

To supplement the prospective study for low prevalence analytes, a total of 427 frozen archived PBC specimens were collected from 12 external laboratories and retrospectively tested. Of these, 395 were evaluable. Prior to testing with the BIOFIRE BCID2 Panel, the composition/integrity of the specimens was first confirmed with confirmatory molecular methods; 370 specimens contained confirmed analytes of interest.

Table 20 provides a summary of demographic information for the 1074 specimens included in the prospective study and the 370 specimens included in the archived study.

Table 20. Demographic Data for Prospective and Archived Studies

		Prospective	Archived
	Male	573 (53%)	205 (55%)
Sex	Female	501 (47%)	156 (42%)
	Unknown	0 (0%)	9 (2%)
	<1 year	118 (11%)	22 (6%)
	1-17 years	143 (13%)	32 (9%)
•	18-44 years	125 (12%)	44 (12%)
Age	45-64 years	257 (24%)	112 (30%)
1	65-84 years	333 (31%)	132 (36%)
	85+ years	98 (9%)	27 (7%)
	Unknown	0 (0%)	1 (<1%)
	Total	1074	370

A total of 552 seeded blood culture specimens were also evaluated to further supplement the prospective and archived studies for low prevalence analytes (including AMR genes) and to assess performance in seeded polymicrobial specimens. Seeded PBC specimens were prepared by inoculating human whole blood with a variety of different isolates/strains for each analyte at low concentrations and growing to positivity in a continuous monitoring blood culture system. The number of analytes tested, and the purpose of including each analyte in the seeded study is presented in Table 21 and Table 22.

Table 21. Seeded Specimen Analyte Composition

Purpose	Analyte	Number Tested ^a				
	Listeria monocytogenes	36				
Low Prevalence Analyte	Staphylococcus lugdunensis	30				
-	Bacteroides fragilis	30				

Purpose	Analyte	Number Tested ^a
	Klebsiella aerogenes	42
	Neisseria meningitidis	35
	Salmonella spp.	37
	Stenotrophomonas maltophilia	30
	Candida auris	30
	Candida krusei	33
	Candida tropicalis	35
	Cryptococcus neoformans/gattii	30
	IMP	30
	KPC	45
	NDM	30
	OXA-48-like	30
	VIM	30
	mcr-1	30
	E. faecalis	10
Evaluation of Polymiarabial	E. faecium	10
Evaluation of Polymicrobial Specimens	S. aureus	10
Specimens	mecA/C and MREJ	5
	C. albicans	10
	A. calcoaceticus-baumannii complex	19
AMR Gene Host and Evaluation	K. pneumoniae group	92
of Polymicrobial Specimens	E. coli	44
	P. aeruginosa	26
	E. cloacae complex	8
AMR Gene Host	K. oxytoca	6
	Proteus	9
Present in Host with other Rare AMR Genes	CTX-M	63

^a 552 seeded specimens total including some with polymicrobial composition or Detected results reporting both an AMR gene and host organism.

Table 22. Strains and Replicates Tested in Seeded Specimens

Organism	AMR Gene(s)	Strain	Independent Specimens Tested
		2 Individual clinical isolates	5 each (10)
A - in - 4 - h 4 - n h ii	NDM-1	AR-BANK #0083	3
cinetobacter baumannii	NDM-1	AR-BANK #0088	3
	IMP-4	Individual clinical isolate	3
Acinetobacter baumannii total			19
		ATCC 29771	3
		ATCC 23745	3
		ATCC 25285	3
		ATCC 29768	3
Bacteroides fragilis		ATCC 43858	3
Bacteroides Iragilis		ATCC 43860	3
		ATCC 43936	3
		ATCC 43937	3
		ATCC BAA-2283	3
		Individual clinical isolate	3
Bacteroides fragilis total			30
Candida albicans		2 Individual clinical isolates	5 each (10)
Candida albicans total			10
		AR-BANK #0381	3
		AR-BANK #0382	3
		AR-BANK #0383	3
		AR-BANK #0384	3
Candida auris		AR-BANK #0385	3
Candida auris		AR-BANK #0386	3
		AR-BANK #0387	3
		AR-BANK #0388	3
		AR-BANK #0389	3
		AR-BANK #0390	3
Candida auris total			30

REF

- Ourseis	AMD Comp(s)	Ctuain	Indonesia Consissor Total
Organism	AMR Gene(s)	Strain	Independent Specimens Tested
Candida kwasai		ATCC 6259	15 3
Candida krusei		ATCC 6258 15 Individual clinical isolates	· ·
Candida krusei total		15 Individual clinical isolates	1 each (15)
		35 Individual clinical isolates	
Candida tropicalis Candida tropicalis total		35 Individual clinical isolates	1 each (35) 35
Candida tropicans total		Individual clinical isolate	3
		ATCC 56989	3
Cryptococcus cottii		ATCC 56969 ATCC 56992	3
Cryptococcus gattii		ATCC 50992 ATCC 64062	3
		ATCC 04002 ATCC MYA-4560	3
Cryptososous gottii total		ATCC MTA-4500	15
Cryptococcus gattii total		4 Individual clinical isolates	
Cryptococcus neoformans		ATCC 13690	3 each (12) 3
Curato accesso ne of cumons total		ATCC 13690	15
Cryptococcus neoformans total	NDM 4 CTV M 45	AD DANK #0000	
Enterohacter classes	NDM-1, CTX-M-15 VIM-1	AR-BANK #0038 AR-BANK #0154	3 3
Enterobacter cloacae	KPC	** * *	
Enterphaeter elegant total	KPC	2 Individual clinical isolates	1 each (2)
Enterobacter cloacae total		2 Individual alinias! is slate:	·
Enterococcus faecalis		2 Individual clinical isolates	5 each (10)
Enterococcus faecalis total		2 Individual clinical isolates	10 F each (10)
Enterococcus faecium		2 Individual clinical isolates	5 each (10)
Enterococcus faecium total	NIDMA	AD DANK #0000	10
	NDM-1	AR-BANK #0069	3
	CTX-M-55, mcr-1	AR-BANK #0346	4
	CTX-M-14, CTX-M-55, mcr-1	AR-BANK #0349	4
	mcr-1	AR-BANK #0350	3
	mcr-1	AR-BANK #0493	4
- , . , . , .	mcr-1	AR-BANK #0494	4
Escherichia coli	CTX-M, mcr-1	AR-BANK #0495	3
	NDM-1	ATCC BAA-2452	3
	IMP-4	Individual clinical isolate	3
	IMP-3	Individual clinical isolate	3
	IMP-9	Individual clinical isolate	3
	VIM-7	Individual clinical isolate	3
	KPC	Individual clinical isolate	4
Escherichia coli total			44
		10 Individual clinical isolates	3 each (30)
		2 Individual clinical isolates	1 each (2)
Klebsiella aerogenes	OXA-48	AR-BANK #0074	3
	IMP-4	AR-BANK #0161	4
	CTX-M	Individual clinical isolate	3
Klebsiella aerogenes total	1000		42
Klebsiella oxytoca	KPC-3	AR-BANK #0147	3
•	CTX-M	Individual clinical isolate	3
Klebsiella oxytoca total			6
		2 Individual clinical isolates	5 each (10)
	IMP-4	AR-BANK #0034	3
	OXA-181; CTX-M-15	AR-BANK #0039	3
	VIM-27; CTX-M-15	AR-BANK #0040	3
	VIM-27; CTX-M-15	AR-BANK #0046	3
Klebsiella pneumoniae	OXA-181, CTX-M-15	AR-BANK #0051	3
	OXA232; CTX-M-15	AR-BANK #0066	3
	OXA-232; CTX-M-15	AR-BANK #0075	3
	IMP-4	AR-BANK #0080	3
	VIM-1	AR-BANK #0135	3
	NDM-7; CTX-M-15	AR-BANK #0138	3
	OXA-181; CTX-M-15	AR-BANK #0140	3

Organism	AMR Gene(s)	Strain	Independent Specimens Tested
	OXA-181; CTX-M-15	AR-BANK #0141	3
	OXA-181; CTX-M-15	AR-BANK #0142	3
	NDM-1; OXA-232; CTX-M-15	AR-BANK #0153	3
	OXA-48	AR-BANK #0160	3
	mcr-1	AR-BANK #0497	4
	NDM-1; CTX-M	ATCC BAA-2146	3
	KPC	Individual clinical isolate	8
	KPC	22 Individual clinical isolates	
Vichaialla programaniae total	NPC NPC	22 individual clinical isolates	1 each (22)
Klebsiella pneumoniae total	T	ATCC 19115	8
		ATCC 19115 ATCC 35152	1
Listania managatanana		ATCC 43248	5
Listeria monocytogenes		ATCC 51779	5
		Individual clinical isolate	2
		7 Individual clinical isolates	1 each (7)
		NCTC 10890	8
Listeria monocytogenes total			36
		ATCC 13077	10
		ATCC 13090	10
Neisseria meningitidis		ATCC 13102	4
Noissona meningiliais		ATCC 13103	1
		ATCC 35561	4
		6 Individual clinical isolates	1 each (6)
Neisseria meningitidis total			35
	KPC-6	AR-BANK #0155	3
Proteus mirabilis	NDM-1	AR-BANK #0159	3
	CTX-M	Individual clinical isolate	3
Proteus mirabilis total			9
	VIM-4	AR-BANK #0054	3
	KPC-5	AR-BANK #0090	3
	IMP-14	AR-BANK #0092	4
	VIM-2	AR-BANK #0100	3
Pseudomonas aeruginosa	IMP-1	AR-BANK #0103	4
	VIM-2	AR-BANK #0108	3
	VIM-2	AR-BANK #0110	3
	VIM-2	AR-BANK #0111	3
Pseudomonas aeruginosa total			26
Salmonella sp.		3 Individual clinical isolates	3 each (9)
Salmonella enterica serogroup C		Individual clinical isolate	3
Salmonella enterica ser. Berta		Individual clinical isolate	3
Samonella enterica ser. Berta		Individual clinical isolate	3
Salmonella enterica ser. Enteritidis	mcr-1	AR-BANK #0496	4
Salmonella enterica ser. Javiana		Individual clinical isolate	3
Salmonella enterica ser. Newport Salmonella enterica ser. Senftenberg	 NDM-1	Individual clinical isolate AR-BANK #0127	3
5			3
Salmonella enterica ser.Typhi		Individual clinical isolate	3
Salmonella enterica ser. Typhimurium		Individual clinical isolate	3
Salmonella sp. total			37
Staphylococcus aureus		Individual clinical isolate	5
	mecA & MREJ	Individual clinical isolate	5
Staphylococcus aureus total			10
		5 Individual clinical isolates	3 each (15)
		ATCC 43809	3
Staphylococcus lugdunensis		ATCC 49576	3
Capity10000003 luguullelisis		ATCC 700328	3
		ATCC 700582	3
		NCTC 7990	3
		•	

Organism	AMR Gene(s)	Strain	Independent Specimens Tested
Stenotrophomonas maltophilia		10 Individual clinical isolates	3 each (30)
Stenotrophomonas maltophilia total	The straight of the straight o		30

Table 23. Carbapenem AST Results for Strains with Relevant AMR Gene(s) Used in Seeded Specimens										
					Carbapenem AST					
Strain	AMR Gene(s)	Organism	Doripenem	Ertapenem	Imipenem	Meropenem	Drug Not Specified			
	CLSI M100 E	ED30:2020 Used for Breakpoints								
Individual clinical isolate	IMP-4	Acinetobacter baumannii	1	•	S	S	-			
Individual clinical isolate	IMP-4	Escherichia coli	•	R	R	R	-			
	CLSI 2018	M100 S28 Used for Breakpoints								
AR-BANK #0103	IMP-1	Pseudomonas aeruginosa	R	-	R	R	-			
AR-BANK #0161	IMP-4	Klebsiella aerogenes	R	R	ı	I	-			
AR-BANK #0034	IMP-4	Klebsiella pneumoniae	_	R	S		-			
AR-BANK #0080	IMP-4	Klebsiella pneumoniae	R	R	ı	R	-			
AR-BANK #0092	IMP-14	Pseudomonas aeruginosa	R	-	R	R	-			
AR-BANK #0147	KPC-3	Klebsiella oxytoca	ı	R	R	I	-			
AR-BANK #0090	KPC-5	Pseudomonas aeruginosa	R	-	R	R	-			
AR-BANK #0155	KPC-6	Proteus mirabilis	ı	R	R	I	-			
AR-BANK #0083	NDM-1	Acinetobacter baumannii	R	-	R	R	-			
AR-BANK #0088	NDM-1	Acinetobacter baumannii	R	-	R	R	-			
AR-BANK #0038ª	NDM-1	Enterobacter cloacae	R	R	R	R	-			
AR-BANK #0069	NDM-1	Escherichia coli	R	R	R	R	-			
AR-BANK #0159	NDM-1	Proteus mirabilis	R	R	R	R	-			
AR-BANK #0127	NDM-1	Salmonella enterica ser. Senftenberg	R	R	R	R	-			
AR-BANK #0153 ^a	NDM-1, OXA-232	Klebsiella pneumoniae	R	R	R	R	-			
AR-BANK #0138ª	NDM-7	Klebsiella pneumoniae	R	R	R	R	-			
AR-BANK #0074	OXA-48	Klebsiella aerogenes	ı	R	R	ı	-			
AR-BANK #0160	OXA-48	Klebsiella pneumoniae	R	R	R	R	-			
AR-BANK #0039 ^a	OXA-181	Klebsiella pneumoniae	R	R	R	I	-			
AR-BANK #0051 ^a	OXA-181	Klebsiella pneumoniae	R	R	R	R	-			
AR-BANK #0140 ^a	OXA-181	Klebsiella pneumoniae	R	R	ı	R	-			
AR-BANK #0141ª	OXA-181	Klebsiella pneumoniae	R	R	ı	R	-			
AR-BANK #0142ª	OXA-181	Klebsiella pneumoniae	I	R	R	ı	-			
AR-BANK #0066ª	OXA-232	Klebsiella pneumoniae	R	R	R	R	-			
AR-BANK #0075 ^a	OXA-232	Klebsiella pneumoniae	R	R	R	R	-			
AR-BANK #0154	VIM-1	Enterobacter cloacae	R	R	R	I	-			
AR-BANK #0135	VIM-1	Klebsiella pneumoniae	R	R	R	R	-			

				Carba	pener	n AS	7
Strain	AMR Gene(s)	Organism	Doripenem	Ertapenem	Imipenem	Meropenem	Drug Not Specified
AR-BANK #0100	VIM-2	Pseudomonas aeruginosa	R	-	R	R	-
AR-BANK #0108	VIM-2	Pseudomonas aeruginosa	R	-	R	R	-
AR-BANK #0110	VIM-2	Pseudomonas aeruginosa	R	-	R	R	-
AR-BANK #0111	VIM-2	Pseudomonas aeruginosa	R	-	R	R	-
AR-BANK #0054	VIM-4	Pseudomonas aeruginosa	ı	-	R	R	-
AR-BANK #0040°	VIM-27	Klebsiella pneumoniae	R	R	R	R	-
AR-BANK #0046a	VIM-27	Klebsiella pneumoniae	R	R	R	R	-
	CLSI 2012	M100 S22 Used for Breakpoints					
Individual clinical isolate	KPC	Enterobacter cloacae	-	-	-	-	R
Individual clinical isolate	KPC	Enterobacter cloacae	-	-	-	-	R
Individual clinical isolate	KPC	Escherichia coli	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	I
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Individual clinical isolate	KPC	Klebsiella pneumoniae	-	-	-	-	R
Unk	nown Source for B	reakpoints or No AST Information Ava	ilable				

			(Т			
Strain	AMR Gene(s)	Organism		Ertapenem	Imipenem	Meropenem	Drug Not Specified
Individual clinical isolate	IMP-3	Escherichia coli	-	-	-	-	-
Individual clinical isolate	IMP-9	Escherichia coli	-	-	-	-	-
ATCC BAA-2452	NDM-1	Escherichia coli		R	R	-	-
ATCC BAA-2146 ^{a,b}	NDM-1	Klebsiella pneumoniae		-	-	-	-
Individual clinical isolate	VIM-7	Escherichia coli	-	-	-	-	-

^a Also carries CTX-M gene.

Table 24. ESBL AST Results for Strains with Relevant AMR Gene(s) Used in Seeded Specimens

			ESBL AST							
Strain	AMR Gene(s)	Organism		Aztreonam	Cefazolin	Cefepime	Cefotaxime	Cefoxitin	Ceftazidime	Ceftriaxone
	CLSI M100 E	D30:2020 Used for Brea	kpoin	ts						
Individual clinical isolate	CTX-M	Klebsiella aerogenes	R	R	-	S	R	R	R	R
Individual clinical isolate	CTX-M	Klebsiella oxytoca	R	R	-	S	R	S	S	R
Individual clinical isolate	CTX-M	Proteus mirabilis	R	S	-	S	R	S	S	R
CLSI 2018 M100 S28 Used for Breakpoints										
AR-BANK #0495 ^{a,e}	CTX-M	Escherichia coli	R	R	R	R	R	S	R	R
AR-BANK #0497 ^{a,e}	CTX-M	Klebsiella pneumoniae	R	R	R	R	R	ı	R	R
AR-BANK #0349 ^a	CTX-M-14, CTX-M-55	Escherichia coli	R	R	R	R	R	ı	R	R
AR-BANK #0038 ^b	CTX-M-15	Enterobacter cloacae	R	R	R	R	R	R	R	R
AR-BANK #0039°	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0040 ^d	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0046d	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0051°	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0066°	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0075°	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0138 ^b	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0140°	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0141°	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	ı	R	R
AR-BANK #0142°	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0153 ^{b,c}	CTX-M-15	Klebsiella pneumoniae	R	R	R	R	R	R	R	R
AR-BANK #0346ª	CTX-M-55	Escherichia coli	R	R	R	R	R	R	R	R
	No As	ST Information Available								

^b Presence of CTX-M gene verified by independent molecular method.

ATCC BAA-2146^{b,e} CTX-M Klebsiella pneumoniae - - - - - - - -

Table 25. Colistin MIC for Strains with mcr-1 Gene Used in Seeded Specimens

Strain	AMR Gene(s)	Organism	Colistin MIC (µg/ml)
AR-BANK #0346ª	mcr-1	Escherichia coli	4
AR-BANK #0349ª	mcr-1	Escherichia coli	2-4
AR-BANK #0350	mcr-1	Escherichia coli	4
AR-BANK #0493	mcr-1	Escherichia coli	8
AR-BANK #0494	mcr-1	Escherichia coli	8
AR-BANK #0495 ^{a,b}	mcr-1	Escherichia coli	4
AR-BANK #0497 ^{a,b}	mcr-1	Klebsiella pneumoniae	8
AR-BANK #0496	mcr-1	Salmonella sp.	8

^a Also carries CTX-M gene.

Table 26. Methicillin AST Result for Strain with mecA and MREJ Genes Used in Seeded Specimens

Strain	Organism	AMR Gene(s)	Methicillin AST
Individual clinical isolate ^a	Staphylococcus aureus	mecA & MREJ	R

^a CLSI 2012 M100 S22 used for breakpoints.

The results from all three clinical studies are summarized for each organism in Table 27 through Table 39. Performance is based on a comparison of the BIOFIRE BCID2 Panel results to the results from comparator methods for prospective specimens (Table 19), the confirmed analyte of interest for archived specimens, and to the known analyte composition for seeded specimens. Positive Percent Agreement (PPA) or Sensitivity for each analyte was calculated as 100% × (TP / (TP + FN)). True positive (TP) indicates that both the BIOFIRE BCID2 Panel and the comparator method (or known analyte composition) had a positive result for the specific analyte, and false negative (FN) indicates that the BIOFIRE BCID2 Panel was negative while the comparator result was positive. Negative Percent Agreement (NPA) or Specificity was calculated as 100% × (TN / (TN + FP)). True negative (TN) indicates that both the BIOFIRE BCID2 Panel and the comparator method (or known analyte composition) had negative results, and false positive (FP) indicates that the BIOFIRE BCID2 Panel was positive while the comparator result was negative. The exact binomial two-sided 95% confidence interval (95%CI) was calculated. Investigations of discrepant results are summarized in the footnotes.

Table 27. BIOFIRE BCID2 Panel Clinical Performance Summary, Enterococcus spp.

rabio 211 biot in 2 boils 1 and official to the initial of dammary, 2 into occour oppi											
Analyte	Study ^a	Sensitivity			Specificity						
		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI				
Enterococcus faecalis	Prospective	31/33	93.9	80.4-98.3%	1040/1041	99.9	99.5-100%				
	Seeded	10/10	100	72.2-100%	542/542	100	99.3-100%				
	Overall	41/43 ^b	95.3	84.5-98.7%	1582/1583°	99.9	99.6-100%				
	Prospective	27/27	100	87.5-100%	1044/1047	99.7	99.2-99.9%				
Enterococcus faecium	Seeded	10/10	100	72.2-100%	542/542	100	99.3-100%				
	Overall	37/37	100	90.6-100%	1586/1589 ^d	99.8	99.4-99.9%				

^a Archived testing not performed for *E. faecalis* or *E. faecium*.

^a Also carries mcr-1 gene.

^b Also carries NDM gene.

^c Also carries OXA-48-like gene.

d Also carries VIM gene.

e Presence of CTX-M gene verified by independent molecular method.

^b Presence of CTX-M gene verified by independent molecular method.

^c As of February 2020, the United States Food and Drug Administration has not established or recognized minimum inhibitory concentration (MIC) breakpoints for colistin antimicrobial susceptibility testing (AST) related to *mcr-1*.

^b E. faecalis was detected in both FN specimens using an additional molecular method.

[°]The single FP specimen was negative for *E. faecalis* when tested with additional molecular methods.

d E. faecium was detected in all three FP specimens using an additional molecular method.

REF

RFIT-ASY-0147

Table 28. BIOFIRE BCID2 Panel Clinical Performance Summary, Listeria monocytogenes

Analyte	Study	Sensitivity			Specificity			
		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
	Prospective	3/3	100	43.9-100%	1071/1071	100	99.6-100%	
Listoria managutaganas	Archived	5/5	100	56.6-100%	231/231	100	98.4-100%	
Listeria monocytogenes	Seeded	36/36	100	90.4-100%	516/516	100	99.3-100%	
	Overall	44/44	100	92.0-100%	1818/1818	100	99.8-100%	

Table 29. BIOFIRE BCID2 Panel Clinical Performance Summary, Staphylococcus spp.

Analyte	Study ^a	Se	nsitivity	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Specificity			
Allalyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
	Prospective	471/472	99.8	98.8-100%	589/602	97.8	96.3-98.7%	
Staphylococcus spp.	Seeded	40/40	100	91.2-100%	512/512	100	99.3-100%	
	Overall	511/512	99.8	98.9-100%	1101/1114 ^b	98.8	98.0-99.3%	
	Prospective	149/149	100	97.5-100%	923/925	99.8	99.2-99.9%	
Staphylococcus aureus	Seeded	10/10	100	72.2-100%	542/542	100	99.3-100%	
	Overall	159/159	100	97.6-100%	1465/1467°	99.9	99.5-100%	
Staphylococcus epidermidis	Prospective	221/229	96.5	93.3-98.2%	816/845	96.6	95.1-97.6%	
Stapriyiococcus epidermidis	Overall	221/229 ^d	96.5	93.3-98.2%	816/845°	96.6	95.1-97.6%	
	Prospective	4/4	100	51.0-100%	1067/1070	99.7	99.2-99.9%	
Staphylococcus lugdunensis	Archived	16/16	100	80.6-100%	125/125	100	97.0-100%	
Staphylococcus luguunensis	Seeded	30/30	100	88.6-100%	522/522	100	99.3-100%	
	Overall	50/50	100	92.9-100%	1714/1717 ^t	99.8	99.5-99.9%	

^a Archived testing not performed for Staphylococcus spp., S. aureus, or S. epidermidis; seeded testing not performed for S. epidermidis.

Table 30. BIOFIRE BCID2 Panel Clinical Performance Summary, Streptococcus spp.

Analyte	Study ^a	Sensitivity			Specificity			
Allalyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
04	Prospective	121/123	98.4	94.3-99.6%	949/951	99.8	99.2-99.9%	
Streptococcus spp.	Overall	121/123 ^b	98.4	94.3-99.6%	949/951°	99.8	99.2-99.9%	
	Prospective	9/9	100	70.1-100%	1065/1065	100	99.6-100%	
Streptococcus agalactiae (Group B)	Archived	16/16	100	80.6-100%	220/220	100	98.3-100%	
	Overall	25/25	100	86.7-100%	1285/1285	100	99.7-100%	
Strontococcus nnoumanics	Prospective	26/26	100	87.1-100%	1048/1048	100	99.6-100%	
Streptococcus pneumoniae	Overall	26/26	100	87.1-100%	1048/1048	100	99.6-100%	
	Prospective	13/14	92.9	68.5-98.7%	1060/1060	100	99.6-100%	
Streptococcus pyogenes (Group A)	Archived	16/16	100	80.6-100%	220/220	100	98.3-100%	
	Overall	29/30	96.7	83.3-99.4%	1280/1280	100	99.7-100%	

^a Archived testing not performed for Streptococcus spp., S. agalactiae, S. pneumoniae, or S. pyogenes.

b Streptococcus spp. was detected in 1/2 FN specimens using an additional molecular method.

Table 31. BIOFIRE BCID2 Panel Clinical Performance Summary, Acinetobacter calcoaceticus-baumannii complex

Analyte	Study	Sensitivity			Specificity			
Analyte		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
	Prospective	12/13	92.3	66.7-98.6%	1060/1061	99.9	99.5-100%	
Acinetobacter calcoaceticus-baumannii	Archived	34/35	97.1	85.5-99.5%	102/103	99.0	94.7-99.8%	
complex	Seeded	19/19	100	83.2-100%	533/533	100	99.3-100%	
	Overall	65/67ª	97.0	89.8-99.2%	1695/1697 ^b	99.9	99.6-100%	

^a ACB complex was detected in both FN specimens; one was detected using an additional molecular method and one was detected upon BIOFIRE BCID2 Panel retest.

^b Staphylococcus spp. was detected in all 13 FP specimens using an additional molecular method.

^c S. aureus was detected in both FP specimens using an additional molecular method.

d. S. epidermidis was detected in 3/8 FN specimens using an additional molecular method; sequencing of the remaining five FN specimens and their isolates identified them as other Staphylococcus spp.

e S. epidermidis was detected in all 29 FP specimens using an additional molecular method.

S. lugdunensis was detected in all three FP specimens using an additional molecular method.

^c Streptococcus spp. was detected in both FP specimens using an additional molecular method.

^b ACB complex was detected in both FP specimens using an additional molecular method.

RFIT-ASY-0147

Table 32. BIOFIRE BCID2 Panel Clinical Performance Summary, Bacteroides fragilis

Analyte	Study	Sensitivity			Specificity			
		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
	Prospective	6/6	100	61.0-100%	1065/1068	99.7	99.2-99.9%	
Pastaraidas fragilia	Archived	16/16	100	80.6-100%	125/125	100	97.0-100%	
Bacteroides fragilis	Seeded	30/30	100	88.6-100%	522/522	100	99.3-100%	
	Overall	52/52	100	93.1-100%	1712/1715ª	99.8	99.5-99.9%	

^a B. fragilis was detected in all three FP specimens using an additional molecular method.

Table 33. BIOFIRE BCID2 Panel Clinical Performance Summary, Enterobacterales

l able 55.	BIOFIRE BCID2 P			Summary, Ent			
Analyte	Study ^a		nsitivity		Spo	ecificity	
Allalyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	269/270	99.6	97.9-99.9%	750/804	93.3	91.3-94.8%
Enterobacterales	Seeded	228/228	100	98.3-100%	324/324	100	98.8-100%
	Overall	497/498	99.8	98.9-100%	1074/1128 ^b	95.2	93.8-96.3%
	Prospective	16/16	100	80.6-100%	1058/1058	100	99.6-100%
Enterobacter cloacae complex	Archived	16/16	100	80.6-100%	219/219	100	98.3-100%
	Seeded	8/8	100	67.6-100%	544/544	100	99.3-100%
	Overall	40/40	100	91.2-100%	1821/1821	100	99.8-100%
	Prospective	158/159	99.4	96.5-99.9%	913/915	99.8	99.2-99.9%
Escherichia coli	Seeded	44/44	100	92.0-100%	508/508	100	99.2-100%
	Overall	202/203°	99.5	97.3-99.9%	1421/1423 ^d	99.9	99.5-100%
	Prospective	2/2	100	34.2-100%	1072/1072	100	99.6-100%
Klabajalla aayayaya	Archived	16/16	100	80.6-100%	125/125	100	97.0-100%
Klebsiella aerogenes	Seeded	42/42	100	91.6-100%	510/510	100	99.3-100%
	Overall	60/60	100	94.0-100%	1707/1707	100	99.8-100%
	Prospective	8/8	100	67.6-100%	1066/1066	100	99.6-100%
Klabajalla avutasa	Archived	16/16	100	80.6-100%	219/219	100	98.3-100%
Klebsiella oxytoca	Seeded	6/6	100	61.0-100%	546/546	100	99.3-100%
	Overall	30/30	100	88.6-100%	1831/1831	100	99.8-100%
	Prospective	55/56	98.2	90.6-99.7%	1018/1018	100	99.6-100%
Klebsiella pneumoniae group	Seeded	92/92	100	96.0-100%	460/460	100	99.2-100%
	Overall	147/148 ^e	99.3	96.3-99.9%	1478/1478	100	99.7-100%
	Prospective	14/14	100	78.5-100%	1059/1060	99.9	99.5-100%
Ductous our	Archived	16/16	100	80.6-100%	208/208	100	98.2-100%
Proteus spp.	Seeded	9/9	100	70.1-100%	543/543	100	99.3-100%
	Overall	39/39	100	91.0-100%	1810/1811 ^f	99.9	99.7-100%
	Prospective	5/5	100	56.6-100%	1069/1069	100	99.6-100%
Salmanalla ann	Archived	16/16	100	80.6-100%	125/125	100	97.0-100%
Salmonella spp.	Seeded	37/37	100	90.6-100%	515/515	100	99.3-100%
	Overall	58/58	100	93.8-100%	1709/1709	100	99.8-100%
	Prospective	11/11	100	74.1-100%	1063/1063	100	99.6-100%
Serratia marcescens	Archived	16/16	100	80.6-100%	220/220	100	98.3-100%
	Overall	27/27	100	87.5-100%	1283/1283	100	99.7-100%

^a Archived testing not performed for Enterobacterales, E. coli, or K. pneumoniae group; seeded testing not performed for S. marcescens.

Table 34. BIOFIRE BCID2 Panel Clinical Performance Summary, Haemophilus influenzae

Analyte	Study ^a	Sensitivity			Specificity			
		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
Haemophilus influenzae	Prospective	8/8	100	67.6-100%	1066/1066	100	99.6-100%	
	Archived	24/25	96.0	80.5-99.3%	211/211	100	98.2-100%	
	Overall	32/33 ^b	97.0	84.7-99.5%	1277/1277	100	99.7-100%	

^a Seeded testing not performed for *H. influenzae*.

^b Fifty-three (53) of 54 FP *Enterobacterales* results were attributed to the presence of nucleic acid from non-viable *E. coli* in specific lots of blood culture bottles. The remaining FP specimen was observed in a blood culture bottle from a different manufacturer; an *Enterobacterales* organism (*E. coli*) was detected in this specimen using an additional molecular method.

^c The single FN specimen was negative for *E. coli* when tested with Luminex Verigene BC-GN test.

^d The two FP specimens were attributed to the presence of nucleic acid from non-viable *E. coli* in the blood culture bottles.

e K. pneumoniae group was detected in the single FN specimen using an additional molecular method.

f Proteus spp. was detected in the single FP specimen using an additional molecular method.

^b The single FN specimen was determined to contain a novel deletion in the BIOFIRE BCID2 Panel assay target gene region.

REF

RFIT-ASY-0147

Table 35. BIOFIRE BCID2 Panel Clinical Performance Summary, Neisseria meningitidis

Analyte	Childre	Sensitivity			Specificity		
	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	0/0	-	-	1074/1074	100	99.6-100%
Najanaria maningitidia	Archived	3/3	100	43.9-100%	233/233	100	98.4-100%
Neisseria meningitidis	Seeded	35/35	100	90.1-100%	517/517	100	99.3-100%
	Overall	38/38	100	90.8-100%	1824/1824	100	99.8-100%

Table 36. BIOFIRE BCID2 Panel Clinical Performance Summary, Pseudomonas aeruginosa

Analyte	Study ^a	Sensitivity		Specificity			
	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	29/29	100	88.3-100%	1043/1045	99.8	99.3-99.9%
Pseudomonas aeruginosa	Seeded	24/26	92.3	75.9-97.9%	526/526	100	99.3-100%
	Overall	53/55 ^b	96.4	87.7-99.0%	1569/1571°	99.9	99.5-100%

^a Archived testing not performed for P. aeruginosa.

Table 37. BIOFIRE BCID2 Panel Clinical Performance Summary, Stenotrophomonas maltophilia

Amalista	Study	Sensitivity			Specificity		
Analyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	7/8	87.5	52.9-97.8%	1066/1066	100	99.6-100%
Stanatranhamanaa maltanhilia	Archived	22/23	95.7	79.0-99.2%	116/116	100	96.8-100%
Stenotrophomonas maltophilia	Seeded	25/30 ^a	83.3	66.4-92.7%	522/522	100	99.3-100%
	Overall	54/61 ^b	88.5	78.2-94.3%	1704/1704	100	99.8-100%

^a 20/20 single seeded specimens were TP, and 5/10 specimens that were co-seeded with S. aureus were detected. S. aureus was detected in 10/10 of the co-seeded

Table 38. BIOFIRE BCID2 Panel Clinical Performance Summary, Candida spp.

Avaluta	Study ^a	Sei	nsitivity		Spe	cificity	
Analyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	12/12	100	75.8-100%	1061/1062	99.9	99.5-100%
Candida albisana	Archived	16/16	100	80.6-100%	218/218	100	98.3-100%
Candida albicans	Seeded	10/10	100	72.2-100%	542/542	100	99.3-100%
	Overall	38/38	100	90.8-100%	1821/1822 ^b	99.9	99.7-100%
	Prospective	0/0	-	-	1074/1074	100	99.6-100%
Candida auris	Archived	1/1	100	-	13/13	100	77.2-100%
Caridida auris	Seeded	30/30	100	88.6-100%	522/522	100	99.3-100%
	Overall	31/31	100	89.0-100%	1609/1609	100	99.8-100%
	Prospective	10/10	100	72.2-100%	1063/1064	99.9	99.5-100%
Candida glabrata	Archived	16/16	100	80.6-100%	217/218	99.5	97.4-99.9%
	Overall	26/26	100	87.1-100%	1280/1282 ^c	99.8	99.4-100%
	Prospective	2/2	100	34.2-100%	1072/1072	100	99.6-100%
Candida krusei	Archived	9/9	100	70.1-100%	227/227	100	98.3-100%
Candida ki dsei	Seeded	33/33	100	89.6-100%	519/519	100	99.3-100%
	Overall	44/44	100	92.0-100%	1818/1818	100	99.8-100%
	Prospective	8/8	100	67.6-100%	1065/1066	99.9	99.5-100%
Candida parapsilosis	Archived	22/23	95.7	79.0-99.2%	211/211	100	98.2-100%
	Overall	30/31 ^d	96.8	83.8-99.4%	1276/1277°	99.9	99.6-100%
	Prospective	5/5	100	56.6-100%	1069/1069	100	99.6-100%
Candida transaclia	Archived	15/15	100	79.6-100%	219/220	99.5	97.5-99.9%
Candida tropicalis	Seeded	35/35	100	90.1-100%	517/517	100	99.3-100%
	Overall	55/55	100	93.5-100%	1805/1806 ^f	99.9	99.7-100%

^a Seeded testing was not performed for *C. glabrata* or *C. parapsilosis.*

b 16/16 single seeded specimens were TP, and 8/10 specimens that were co-seeded with E. faecalis were detected. E. faecalis was detected in 10/10 of the co-seeded

[°]P. aeruginosa was detected in both FP specimens using an additional molecular method.

^b S. maltophilia was detected in 2/7 FN specimens: one was detected using an additional molecular method and one was detected upon BIOFIRE BCID2 Panel retest; the remaining five FN specimens were polymicrobial seeded specimens.

b C. albicans was detected in the single FP specimen using an additional molecular method.
c. C. glabrata was detected in both FP specimens using an additional molecular method.

RFIT-ASY-0147

Table 39. BIOFIRE BCID2 Panel Clinical Performance Summary, Cryptococcus neoformans/gattii

Analyte	Study	Sensitivity			Specificity		
Analyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	0/0	-	-	1074/1074	100	99.6-100%
Cryptococcus nooformans/gottii	Archived	6/6	100	61.0-100%	135/135	100	97.2-100%
Cryptococcus neoformans/gattii	Seeded	30/30	100	88.6-100%	522/522	100	99.3-100%
	Overall	36/36	100	90.4-100%	1731/1731	100	99.8-100%

BIOFIRE BCID2 Panel assay performance stratified by species for *Staphylococcus* spp., *Streptococcus* spp., *Enterobacterales, Enterobacter cloacae* complex, *Klebsiella pneumoniae* group, *Proteus* spp., *Salmonella* spp., and *Cryptococcus neoformans/gattii*. BIOFIRE BCID2 Panel genus and group level organism results are presented in Table 40 through Table 43. Note: multiple organisms from a group may be detected in a single specimen, therefore the "Total" values in these tables may not match the performance values presented above, which are reported per specimen.

Table 40. Stratification of Staphylococcus spp. Assay Performance by Species

Species		Sensitivity	
Species	Prospective	Archived	Seeded
S. aureus	149/149 (100%)	-	10/10 (100%)
S. auricularis	1/1 (100%)	-	-
S. capitis	19/19 (100%)	-	-
S. caprae	4/4 (100%)	-	-
S. epidermidis	229/229 (100%)	-	-
S. haemolyticus	24/24 (100%)	-	-
S. hominis	52/53 (98.1%)	-	-
S. lentus	1/1 (100%)	-	-
S. lugdunensis	4/4 (100%)	16/16 (100%)	30/30 (100%)
S. pettenkoferi	10/10 (100%)	-	-
S. simulans	3/3 (100%)	-	-
S. warneri	2/2 (100%)	-	-
Total Staphylococcus spp.	498/499 (99.8%) 95%CI: 98.9-100%	16/16 (100%) 95%CI: 80.6-100%	40/40 (100%) 95% CI: 91.2-100%

Table 41. Stratification of Streptococcus spp. Assay Performance by Species

	e 41. Stratification of Streptococcus	Sensitivity	
Species	Prospective	Archived	Seeded
Group A (Pyogenic)			
S. pyogenes	13/14 (92.9%)	16/16 (100%)	-
Group B (Pyogenic)			
S. agalactiae	9/9 (100%)	16/16 (100%)	-
Group C/G (Pyogenic)			
S. canis	1/1 (100%)	-	-
S. dysgalactiae	5/5 (100%)	-	-
Group D (Bovis)			
S. bovis group	2/2 (100%)	-	-
S. gallolyticus	2/2 (100%)	-	-
S. lutetiensis	1/1 (100%)	-	-
Group F (Anginosus)			
S. anginosus	3/4 (75.0%)	-	-
S. anginosus group	3/3 (100%)	-	-
S. constellatus	2/2 (100%)	-	-
S. intermedius	2/2 (100%)	-	-
S. vestibularis	2/2 (100%)	-	-
Mitis Group			
S. gordonii	1/1 (100%)	-	-
S. mitis	10/10 (100%)	-	-
S. mitis/oralis	7/7 (100%)	-	-
S. oralis	1/1 (100%)	-	-
S. parasanguinis	6/6 (100%)	-	-
S. pneumoniae	26/26 (100%)	-	-

^d The single FN specimen was misidentified as *C. parapsilosis* by the source laboratory; molecular testing of the specimen identified it as *C. orthopsilosis*.

^e C. parapsilosis was detected in the single FP specimen using an additional molecular method.

The single FP specimen was identified as a cross-reactivity between the BIOFIRE BCID2 Panel Ctropicalis assay and high titer *C. parapsilosis* (refer to Analytical Specificity section for additional information regarding this cross-reactivity).

RFIT-ASY-0147

Species		Sensitivity	
Species	Prospective	Archived	Seeded
Mutans Group			
S. mutans	2/2 (100%)	-	-
Salivarius Group			
S. salivarius	8/8 (100%)	-	-
Other			
Viridans streptococci	19/19 (100%)	-	-
Total Streptococcus spp.	125/127 (98.4%) 95%CI: 94.4-99.6%	32/32 (100%) 95%CI: 89.3-100%	-

Table 42. Stratification of *Enterobacterales* Assay Performance by Species

Table 42. Stratification of Enterobacterales Assay Performance by Species Sensitivity									
Species	Prospective	Archived	Seeded						
Enterobacter cloacae complex	Fiospective	Arciliveu	Seeded						
Enterobacter cloacae	10/10 (100%)	14/14 (100%)	8/8 (100%)						
Enterobacter cloacae complex	3/3 (100%)	2/2 (100%)	-						
Enterobacter cioacae complex Enterobacter hormaechei	2/2 (100%)	\ /	-						
Enterobacter kobei	1/1 (100%)	- -	-						
Lillerobacter Kobel	16/16 (100%)	16/16 (100%)	8/8 (100%)						
Total	95%CI: 80.6-100%	95%CI: 80.6-100%	95%CI: 67.6-100%						
Klebsiella pneumoniae group									
Klebsiella pneumoniae	51/51 (100%)	-	92/92 (100%)						
Klebsiella pneumoniae group	3/3 (100%)	-	-						
Klebsiella variicola	2/2 (100%)	-	-						
Total	56/56 (100%) 95%CI: 93.6-100%	-	92/92 (100%) 95%CI: 96.0-100%						
Proteus spp.	93 /601: 93:0-100 /6		33 /801. 30.0-100 /8						
Proteus mirabilis	13/13 (100%)	14/14 (100%)	9/9 (100%)						
Proteus penneri	1/1 (100%)								
Proteus vulgaris	-	1/1 (100%)	<u>-</u>						
Proteus vulgaris Proteus sp.	-	1/1 (100%)	-						
	14/14 (100%)	16/16 (100%)	9/9 (100%)						
Total	95%CI: 78.5-100%	95%CI: 80.6-100%	95%CI: 70.1-100%						
Salmonella spp.									
Salmonella enterica sv. Berta	-	-	3/3 (100%)						
Salmonella enterica sv. Enteritidis	-	-	7/7 (100%)						
Salmonella enterica sv. Javiana	-	-	3/3 (100%)						
Salmonella enterica sv. Newport	-	1/1 (100%)	3/3 (100%)						
Salmonella enterica sv. Paratyphi	-	1/1 (100%)	-						
Salmonella enterica sv. Senftenberg	-	-	3/3 (100%)						
Salmonella enterica sv. Tel-el-kebir	1/1 (100%)	-	-						
Salmonella enterica sv. Typhi	-	1/1 (100%)	3/3 (100%)						
Salmonella enterica sv. Typhimurium	-	-	3/3 (100%)						
Salmonella enterica serogroup B	-	1/1 (100%)	-						
Salmonella enterica serogroup C	-	-	3/3 (100%)						
Salmonella enterica	2/2 (100%)	-	-						
Salmonella spp.	2/2 (100%)	12/12 (100%)	9/9 (100%)						
Total	5/5 (100%)	16/16 (100%)	37/37 (100%)						
	95%CI: 56.6-100%	95%CI: 80.6-100%	95%CI: 90.6-100%						
Other	4/4 (4000())								
Citrobacter amalonaticus	1/1 (100%)	-	-						
Citrobacter freundii	1/1 (100%)	-	-						
Enterobacter amnigenus	1/1 (100%)	-	-						
Escherichia coli	159/159 (100%)	-	44/44 (100%)						
Hafnia alvei	1/1 (100%)	-	-						
Klebsiella aerogenes	2/2 (100%)	16/16 (100%)	42/42 (100%)						
Klebsiella oxytoca	8/8 (100%)	16/16 (100%)	6/6 (100%)						
Pantoea septica/agglomerans	1/1 (100%)	-	-						
Providencia stuartii	2/3 (66.7%)	-	-						
Serratia liquefaciens complex	1/1 (100%)	-	-						
Serratia marcescens	11/11 (100%)	16/16 (100%)	-						
Total Enterobacterales	279/280 (99.6%) 95%CI: 98.0-99.9%	96/96 (100%) 95%CI: 96.2-100%	238/238 (100%) 95%CI: 98.4-100%						

REF

RFIT-ASY-0147

Table 43. Stratification of Cryptococcus neoformans/gattii Assay Performance by Species

Smarian	Sensitivity						
Species	Prospective	Archived	Seeded				
C. gattii	-	-	15/15 (100%)				
C. neoformans	-	6/6 (100%)	15/15 (100%)				
Total Cryptococcus		6/6 (100%)	30/30 (100%)				
neoformans/gattii	-	95%CI: 61.0-100%	95%CI: 88.6-100%				

Antimicrobial resistance (AMR) gene results are reported only when one or more applicable bacteria that may carry the gene are also detected in the sample. If no applicable bacteria are detected, the AMR gene results are reported as Not Applicable (N/A). The results are summarized for each AMR gene in Table 44 through Table 73. Note: the "Performance Summary" tables below do not include specimens for which a potential host organism was not reported (i.e. the AMR gene was reported as N/A); these specimens are instead accounted for in the "Distribution of Clinical Specimens" tables below.

Table 44. BIOFIRE BCID2 Panel Clinical Performance Summary, CTX-M

Analyte	Study	Positive Percent Agreement		Negative Percent Agreement			
Allalyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	46/47	97.9	88.9-99.6%	312/312	100	98.8-100%
CTX-M	Seeded	63/63	100	94.3-100%	198/198	100	98.1-100%
	Overall	109/110	99.1	95.0-99.8%	510/510	100	99.3-100%

^a Archived testing was not performed for CTX-M.

Table 45. Distribution of CTX-M in Prospective Clinical Specimens								
CT	гх-м	SOC: any associated organism PCR/seq: CTX-M						
		Org+ / Res+ Org+ / Res- Org - Total						
BCID2	Org+ / Res+	46	0	0	46			
Panel	Org+ / Res-	1	258	54ª	313			
Result	Org -	0	2	713	715			
Result	Total	47	260	767	1074			
		Performance	Agreement	%	95%CI			
Org+ / Res+		46/47	97.9	88.9-99.6%				
	Org+ / Res-			99.2	97.2-99.8%			
		Org -	713/767ª	93.0	90.9-94.6%			

^a Fifty-three (53) FP results due to the presence of nucleic acid from non-viable E. coli in the blood culture bottles.

Table 46 Stratification of CTV M Clinical Parformance by Accordated Heat Organism

		Positive Pe	rcent Ag	reement	Negative Pe	rcent Ag	reement
Analyte	Study ^a	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overell	Prospective	46/47	97.9	88.9-99.6%	312/312	100	98.8-100%
Overall (any associated organism identified)	Seeded	63/63	100	94.3-100%	198/198	100	98.1-100%
	Overall	109/110	99.1	95.0-99.8%	510/510	100	99.3-100%
	Prospective	1/1	100	-	12/12	100	75.8-100%
Acinetobacter calcoaceticus-baumannii	Seeded	0/0	-	-	19/19	100	83.2-100%
complex	Overall	1/1	100	-	31/31	100	89.0-100%
	Prospective	46/47	97.9	88.9-99.6%	276/276	100	98.6-100%
Enterobacterales	Seeded	63/63	100	94.3-100%	165/165	100	97.7-100%
	Overall	109/110	99.1	95.0-99.8%	441/441	100	99.1-100%
	Prospective	0/0	-	-	16/16	100	80.6-100%
Enterobacter cloacae complex	Seeded	3/3	100	43.9-100%	5/5	100	56.6-100%
	Overall	3/3	100	43.9-100%	21/21	100	84.5-100%
	Prospective	30/30	100	88.6-100%	130/130	100	97.1-100%
Escherichia coli	Seeded	11/11	100	74.1-100%	33/33	100	89.6-100%
	Overall	41/41	100	91.4-100%	163/163	100	97.7-100%
Klebsiella aerogenes	Prospective	1/1	100	-	1/1	100	-

RFIT-ASY-0147

		Positive Pe	rcent Ag	reement	Negative Pe	rcent Ag	reement
Analyte	Study ^a	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Seeded	3/3	100	43.9-100%	39/39	100	91.0-100%
	Overall	4/4	100	51.0-100%	40/40	100	91.2-100%
	Prospective	0/0	-	-	8/8	100	67.6-100%
Klebsiella oxytoca	Seeded	3/3	100	43.9-100%	3/3	100	43.9-100%
	Overall	3/3	100	43.9-100%	11/11	100	74.1-100%
	Prospective	12/12	100	75.8-100%	43/43	100	91.8-100%
Klebsiella pneumoniae group	Seeded	40/40	100	91.2-100%	52/52	100	93.1-100%
	Overall	52/52	100	93.1-100%	95/95	100	96.1-100%
	Prospective	4/4	100	51.0-100%	11/11	100	74.1-100%
Proteus spp.	Seeded	3/3	100	43.9-100%	6/6	100	61.0-100%
	Overall	7/7	100	64.6-100%	17/17	100	81.6-100%
	Prospective	0/0	-	-	5/5	100	56.6-100%
Salmonella spp.	Seeded	0/0	-	-	37/37	100	90.6-100%
	Overall	0/0	-	-	42/42	100	91.6-100%
Serratia marcescens	Prospective	0/1	0	-	10/10	100	72.2-100%
Serralia marcescens	Overall	0/1	0	-	10/10	100	72.2-100%
	Prospective	2/2	100	34.2-100%	29/29	100	88.3-100%
Pseudomonas aeruginosa	Seeded	0/0	-	-	24/24	100	86.2-100%
	Overall	2/2	100	34.2-100%	53/53	100	93.2-100%

^a Archived testing not performed for CTX-M; seeded testing not performed for CTX-M with S. *marcescens*.

Table 47. BIOFIRE BCID2 Panel Clinical Performance Summary, IMP

TUNIC	THE BIOLINE B	CIDE I GIICI CIIIIICG		nance canning	y,		
Analyte	Study ^a	Positive Percent Agreement			Negative Percent Agreement		
Analyte		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	0/0	-	-	359/359	100	98.9-100%
IMP	Seeded	29/29	100	88.3-100%	232/232	100	98.4-100%
	Overall	29/29	100	88.3-100%	591/591	100	99.4-100%

^a Archived testing not performed for IMP.

Table 48. Distribution of IMP in Prospective Clinical Specimens										
II	MP	SOC: any associated organism PCR/seq: IMP								
		Org+ / Res+	Org+ / Res-	Org -	Total					
Org+ / Re	Org+ / Res+	0	0	0	0					
BCID2 Panel	Org+ / Res-	0	305	54ª	359					
Result	Org -	0	2	713	715					
Result	Total	0	307	767	1074					
		Performance	Agreement	%	95%CI					
		Org+ / Res+	0/0	-	-					
	Org+ / Res-			99.3	97.7-99.8%					
		Org -	713/767ª	93.0	90.9-94.6%					

^a Fifty-three (53) FP results due to the presence of nucleic acid from non-viable *E. coli* in the blood culture bottles.

RFIT-ASY-0147

Table 49. Stratification of IMP Clinical Performance by Associated Host Organism, Seeded study^a

Analysis	Positive Pe	rcent Ag	reement	Negative Percent Agreement		
Analyte	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall (any associated organism identified)	29/29	100	88.3-100%	232/232	100	98.4-100%
Acinetobacter calcoaceticus-baumannii complex	3/3	100	43.9-100%	16/16	100	80.6-100%
Enterobacterales	19/19	100	83.2-100%	209/209	100	98.2-100%
Enterobacter cloacae complex	0/0	-	-	8/8	100	67.6-100%
Escherichia coli	9/9	100	70.1-100%	35/35	100	90.1-100%
Klebsiella aerogenes	4/4	100	51.0-100%	38/38	100	90.8-100%
Klebsiella oxytoca	0/0	-	-	6/6	100	61.0-100%
Klebsiella pneumoniae group	6/6	100	61.0-100%	86/86	100	95.7-100%
Proteus spp.	0/0	-	-	9/9	100	70.1-100%
Salmonella spp.	0/0	-	-	37/37	100	90.6-100%
Pseudomonas aeruginosa	7/7	100	64.6-100%	17/17	100	81.6-100%

^a No observations for IMP in the prospective evaluation; archived testing not performed; seeded testing not performed for IMP with S. marcescens.

Table 50. BIOFIRE BCID2 Panel Clinical Performance Summary, KPC

Analyte	Study	Positive Percent Agreement			Negative Percent Agreement				
Analyte		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI		
	Prospective ^a	4/4	100	51.0-100%	328/328	100	98.8-100%		
KPC	Archived	14/14	100	78.5-100%	5/5	100	56.6-100%		
RPC	Seeded	45/45	100	92.1-100%	216/216	100	98.3-100%		
	Overall	63/63	100	94.3-100%	549/549	100	99.3-100%		

^a Twenty-seven (27) specimens were FN for an associated host organism by the molecular comparator method, thus providing an "N/A" result for KPC.

Table 51 Distribution of KDC in Prospective Clinical Specimens

Table 51. Distribution of KPC in Prospective Clinical Specimens									
۲	(PC	S	SOC: any associated organism FDA-cleared test: KPC						
		Org+ / Res+	Org+ / Res-	Org -	Total				
BCID2	Org+ / Res+	4	0	0	4				
Panel	Org+ / Res-	0	298	54ª	352				
Result	Org -	0	0	713	713				
Result	Total	4	298	767	1069 ^b				
		Performance	Agreement	%	95%CI				
		Org+ / Res+	4/4	100	51.0-100%				
		Org+ / Res-	298/298	100	98.7-100%				
		Org -	713/767ª	93.0	90.9-94.6%				

^a Fifty-three (53) FP results due to the presence of nucleic acid from non-viable *E. coli* in the blood culture

Table 52. Stratification of KPC Clinical Performance by Associated Host Organism

Amaluta	Chudud	Positive Per	Positive Percent Agreement			Negative Percent Agreement		
Analyte	Study ^a	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
	Prospective	4/4	100	51.0-100%	328/328	100	98.8-100%	
Overall	Archived	14/14	100	78.5-100%	5/5	100	56.6-100%	
(any associated organism identified)	Seeded	45/45	100	92.1-100%	216/216	100	98.3-100%	
	Overall	63/63	100	94.3-100%	549/549	100	99.3-100%	
	Prospective	0/0	-	-	13/13	100	77.2-100%	
Acinetobacter calcoaceticus-baumannii	Archived	0/0	-	-	5/5	100	56.6-100%	
complex	Seeded	0/0	-	-	19/19	100	83.2-100%	
	Overall	0/0	-	-	37/37	100	90.6-100%	
Enterobacterales	Prospective	4/4	100	51.0-100%	292/292	100	98.7-100%	
Litteropacterales	Archived	14/14	100	78.5-100%	0/0	-	-	

b Five specimens were FN for the associated host organism by the molecular comparator method, thus providing an "N/A" result for KPC.

RFIT-ASY-0147

Assolute	0443	Positive Pe	rcent Ag	reement	Negative Pe	rcent Ag	reement
Analyte	Study ^a	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Seeded	42/42	100	91.6-100%	186/186	100	98.0-1009
	Overall	60/60	100	94.0-100%	478/478	100	99.2-1009
	Prospective	0/0	-	-	16/16	100	80.6-1009
Fatarahastar alabasa samular	Archived	2/2	100	34.2-100%	0/0	-	-
Enterobacter cloacae complex	Seeded	2/2	100	34.2-100%	6/6	100	61.0-100
	Overall	4/4	100	51.0-100%	22/22	100	85.1-100
	Prospective	0/0	-	-	159/159	100	97.6-100
Escherichia coli	Seeded	4/4	100	51.0-100%	40/40	100	91.2-100
	Overall	4/4	100	51.0-100%	199/199	100	98.1-100
	Prospective	0/0	-	-	2/2	100	34.2-100
Klebsiella aerogenes	Seeded	0/0	-	-	42/42	100	91.6-100
	Overall	0/0	-	-	44/44	100	92.0-100
	Prospective	0/0	-	-	8/8	100	67.6-100
Klebsiella oxytoca	Archived	1/1	100	-	0/0	-	-
	Seeded	3/3	100	43.9-100%	3/3	100	43.9-100
	Overall	4/4	100	51.0-100%	11/11 1	100	74.1-100
	Prospective	4/4	100	51.0-100%		100	93.0-100
Klebsiella pneumoniae group	Archived	11/11	100	74.1-100%	0/0	-	-
Kiebsiella prieuriforliae group	Seeded	30/30	100	88.6-100%	62/62	100	94.2-100
	Overall	45/45	100	92.1-100%	113/113	100	96.7-100
	Prospective	0/0	-	-	15/15	100	79.6-100
Proteus spp.	Seeded	3/3	100	43.9-100%	6/6	100	61.0-100
	Overall	3/3	100	43.9-100%	21/21	100	84.5-100
	Prospective	0/0	-	-	5/5	100	56.6-100
Salmonella spp.	Seeded	0/0	-	-	37/37	100	90.6-100
	Overall	0/0	-	-	42/42	100	91.6-100
Serratia marcescens	Prospective	0/0	-	-	11/11	100	74.1-100
Serralia IllalCescells	Overall	0/0	-	-	11/11	100	74.1-100
	Prospective	0/0	-	-	31/31	100	89.0-100
Pseudomonas aeruginosa	Seeded	3/3	100	43.9-100%	21/21	100	84.5-100
	Overall	3/3	100	43.9-100%	52/52	100	93.1-100

^a Archived testing not performed for KPC with *E. coli, K. aerogenes, Proteus* spp., *Salmonella* spp., *S. marcescens,* or *P. aeruginosa*; seeded testing not performed for KPC with *S. marcescens*.

Table 53. BIOFIRE BCID2 Panel Clinical Performance Summary, NDM

1400 001 2.01.112 20121 41101 01110411 0110411 0110411 0110411 0110411 0110411 0110411 0110411 0110411 0110411									
Awalista	Study	Positive Percent Agreement			Negative Percent Agreement				
Analyte		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI		
	Prospective	1/1	100	-	358/358	100	98.9-100%		
NDM	Archived	5/5	100	56.6-100%	5/5	100	56.6-100%		
NDIVI	Seeded	30/30	100	88.6-100%	231/231	100	98.4-100%		
	Overall	36/36	100	90.4-100%	594/594	100	99.4-100%		

Table 54. Distribution of NDM in Prospective Clinical Specimens

N	DM	S	SOC: any associated organism PCR/seq: NDM					
		Org+ / Res+	Org+ / Res-	Org -	Total			
DCIDO	Org+ / Res+	1	0	0	1			
BCID2 Panel	Org+ / Res-	0	304	54ª	358			
Result	Org -	0	2	713	715			
Result	Total	1	306	767	1074			

NDM	SOC: any associated organism PCR/seq: NDM						
	Org+ / Res+	Org+ / Res-	Org -	Total			
	Performance	Agreement	%	95%CI			
	Org+ / Res+	1/1	100	-			
	Org+ / Res-	304/306	99.3	97.6-99.8%			
	Org -	713/767ª	93.0	90.9-94.6%			

^a Fifty-three (53) FP results due to the presence of nucleic acid from non-viable *E. coli* in the blood culture bottles.

Table 55. Stratification of NDM Clinical Performance by Associated Host Organism

Table 55. Stratification of NDM Clinical Performance by Associated Host Organism Positive Percent Agreement Negative Percent Agreement										
Analyte	Study ^a	Positive Pe	rcent Ag	reement	Negative Pe	rcent Ag	reement			
Analyte	Otady	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI			
	Prospective	1/1	100	-	358/358	100	98.9-100%			
Overall	Archived	5/5	100	56.6-100%	5/5	100	56.6-100%			
(any associated organism identified)	Seeded	30/30	100	88.6-100%	231/231	100	98.4-100%			
	Overall	36/36	100	90.4-100%	594/594	100	99.4-100%			
	Prospective	0/0	-	-	13/13	100	77.2-100%			
Acinetobacter calcoaceticus-baumannii	Archived	0/0	-	-	5/5	100	56.6-100%			
complex	Seeded	6/6	100	61.0-100%	13/13	100	77.2-100%			
	Overall	6/6	100	61.0-100%	31/31	100	89.0-100%			
	Prospective	1/1	100	-	322/322	100	98.8-100%			
Enterobacterales	Archived	5/5	100	56.6-100%	0/0	-	-			
Litterobacterales	Seeded	24/24	100	86.2-100%	204/204	100	98.2-100%			
	Overall	30/30	100	88.6-100%	526/526	100	99.3-100%			
	Prospective	0/0	-	-	16/16	100	80.6-100%			
Enterobacter cloacae complex	Seeded	3/3	100	43.9-100%	5/5	100	56.6-100%			
	Overall	3/3	100	43.9-100%	21/21	100	84.5-100%			
	Prospective	0/0	-	-	160/160	100	97.7-100%			
- , , , , , , , , , , , , , , , , , , ,	Archived	1/1	100	-	0/0	-	-			
Escherichia coli	Seeded	6/6	100	61.0-100%	38/38	100	90.8-100%			
	Overall	7/7	100	64.6-100%	198/198	100	98.1-100%			
	Prospective	0/0	-	-	2/2	100	34.2-100%			
Klebsiella aerogenes	Seeded	0/0	-	-	42/42	100	91.6-100%			
	Overall	0/0	-	-	44/44	100	92.0-100%			
	Prospective	0/0	-	-	8/8	100	67.6-100%			
Klebsiella oxytoca	Seeded	0/0	-	-	6/6	100	61.0-100%			
	Overall	0/0	-	-	14/14	100	78.5-100%			
	Prospective	1/1	100	-	54/54	100	93.4-100%			
Klabajalla maayyaaniaa maayy	Archived	4/4	100	51.0-100%	0/0	-	-			
Klebsiella pneumoniae group	Seeded	9/9	100	70.1-100%	83/83	100	95.6-100%			
	Overall	14/14	100	75.8-100%	137/137	100	97.3-100%			
	Prospective	0/0	-	-	15/15	100	79.6-100%			
Proteus spp.	Seeded	3/3	100	43.9-100%	6/6	100	61.0-100%			
	Overall	3/3	100	43.9-100%	21/21	100	84.5-100%			
	Prospective	0/0	-	-	5/5	100	56.6-100%			
Salmonella spp.	Seeded	3/3	100	43.9-100%	34/34	100	89.8-100%			
	Overall	3/3	100	43.9-100%	39/39	100	91.0-100%			
Corretio marconcens	Prospective	0/0	-	-	11/11	100	74.1-100%			
Serratia marcescens	Overall	0/0	-	-	11/11	100	74.1-100%			
	Prospective	1/1	100	-	30/30	100	88.6-100%			
Pseudomonas aeruginosa	Seeded	0/0	-	-	24/24	100	86.2-100%			
-							1			

^a Archived testing not performed for NDM with *E. cloacae* complex, *K. aerogenes, K. oxytoca, Proteus* spp., *Salmonella* spp., *S. marcescens*, or *P. aeruginosa*; seeded testing not performed for NDM with *S. marcescens*.

Table 56. BIOFIRE BCID2 Panel Clinical Performance Summary, OXA-48-like

Analyte	Study ^a	Positive Percent Agreement			Negative Percent Agreement		
	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
OXA-48-like	Prospective	0/0	-	-	323/323	100	98.8-100%
	Seeded	30/30	100	88.6-100%	198/198	100	98.1-100%
	Overall	30/30	100	88.6-100%	521/521	100	99.3-100%

^a Archived testing not performed for OXA-48-like.

Table 57. Distribution of OXA-48-like in Prospective Clinical Specimens

I able	Table 57. Distribution of OXA-48-like in Prospective Clinical Specimens										
OXA-48-like		SOC: any associated organism PCR/seq: OXA-48-like									
		Org+ / Res+	Org+ / Res-	Org -	Total						
BCID2	Org+ / Res+	0	0	0	0						
Panel	Org+ / Res-	0	269	54ª	323						
Result	Org -	0	1	750	751						
Result	Total	0	270	804	1074						
		Performance	Agreement	%	95%CI						
		Org+ / Res+	0/0	-	-						
		Org+ / Res-	269/270	99.6	97.9-99.9%						
		Org -	750/804ª	93.3	91.3-94.8%						

^a Fifty-three (53) FP results due to the presence of nucleic acid from non-viable *E. coli* in the blood culture bottles.

Table 58. Stratification of OXA-48-like Clinical Performance by Associated Host Organism, Seeded study^a

Analyte	Positive Pe	rcent Ag	reement	Negative Pe	rcent Ag	reement
Analyte	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall (any associated organism identified)	30/30	100	88.6-100%	198/198	100	98.1-100%
Enterobacterales	30/30	100	88.6-100%	198/198	100	98.1-100%
Enterobacter cloacae complex	0/0	-	-	8/8	100	67.6-100%
Escherichia coli	0/0	-	-	44/44	100	92.0-100%
Klebsiella aerogenes	3/3	100	43.9-100%	39/39	100	91.0-100%
Klebsiella oxytoca	0/0	-	-	6/6	100	61.0-100%
Klebsiella pneumoniae group	27/27	100	87.5-100%	65/65	100	94.4-100%
Proteus spp.	0/0	-	-	9/9	100	70.1-100%
Salmonella spp.	0/0	-	-	37/37	100	90.6-100%

^a No observations for OXA-48-like in prospective evaluation; archived testing not performed; seeded testing not performed for OXA-48-like with *S. marcescens*.

Table 59. BIOFIRE BCID2 Panel Clinical Performance Summary, VIM

Table 66. Biot like Bolbe I and official terrormande duminary, vim									
Analyte	Chudu	Positive Percent Agreement			Negative Percent Agreement				
Analyte	Study	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI		
	Prospective	4/4	100	51.0-100%	355/355	100	98.9-100%		
VIM	Archived	1/1	100	-	5/5	100	56.6-100%		
VIIVI	Seeded	29/29	100	88.3-100%	232/232	100	98.4-100%		
	Overall	34/34	100	89.8-100%	592/592	100	99.4-100%		

Table 60. Distribution of VIM in Prospective Clinical Specimens

	Table 60. Distribution of view in Prospective Clinical Specimens											
,	VIM		SOC: any associated organism PCR/seq: VIM									
		Org+ / Res+	Org+ / Res-	Org -	Total							
	Org+ / Res+	4ª	0	0	4							
	Org+ / Res-	0	301	54 ^b	355							

VIM		S	SOC: any associated organism PCR/seq: VIM						
		Org+ / Res+	Org+ / Res-	Org -	Total				
BCID2	Org -	0	2	713	715				
Panel Result	Total	4	303	767	1074				
		Performance	Agreement	%	95%CI				
		Org+ / Res+	4/4	100	51.0-100%				
		Org+ / Res-	301/303	99.3	97.6-99.8%				
		Org -	713/767 ^b	93.0	90.9-94.6%				

Table 61. Stratification of VIM Clinical Performance by Associated Host Organism

	0	Positive Pe	rcent Ag	reement	Negative Pe	rcent Ag	reement
Analyte	Study ^a	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	4/4 ^b	100	51.0-100%	355/355	100	98.9-100%
Overall	Archived	1/1	100	-	5/5	100	56.6-100%
(any associated organism identified)	Seeded	29/29	100	88.3-100%	232/232	100	98.4-100%
, , ,	Overall	34/34	100	89.8-100%	592/592	100	99.4-100%
	Prospective	0/0	-	-	13/13	100	77.2-100%
Acinetobacter calcoaceticus-baumannii	Archived	0/0	-	-	5/5	100	56.6-100%
complex	Seeded	0/0	-	-	19/19	100	83.2-100%
	Overall	0/0	-	-	37/37	100	90.6-100%
	Prospective	2/2	100	34.2-100%	321/321	100	98.8-1009
Futourly a stougle a	Archived	1/1	100	-	0/0	-	-
Enterobacterales	Seeded	15/15	100	79.6-100%	213/213	100	98.2-100%
	Overall	18/18	100	82.4-100%	534/534	100	99.3-1009
	Prospective	0/0	-	-	16/16	100	80.6-1009
Enterobacter cloacae complex	Seeded	3/3	100	43.9-100%	5/5	100	56.6-1009
·	Overall	3/3	100	43.9-100%	21/21	100	84.5-100
	Prospective	0/0	-	-	160/160	100	97.7-1009
Escherichia coli	Seeded	3/3	100	43.9-100%	41/41	100	91.4-100
	Overall	3/3	100	43.9-100%	201/201	100	98.1-100
	Prospective	0/0	-	-	2/2	100	34.2-100°
Klebsiella aerogenes	Seeded	0/0	-	-	42/42	100	91.6-1009
	Overall	0/0	-	-	44/44	100	92.0-1009
	Prospective	0/0	-	-	8/8	100	67.6-100°
Klahajalla ayutasa	Archived	1/1	100	-	0/0	-	-
Klebsiella oxytoca	Seeded	0/0	-	-	6/6	100	61.0-1009
	Overall	1/1	100	-	14/14	100	78.5-1009
	Prospective	2/2	100	34.2-100%	53/53	100	93.2-1009
Klebsiella pneumoniae group	Seeded	9/9	100	70.1-100%	83/83	100	95.6-1009
, , ,	Overall	11/11	100	74.1-100%	136/136	100	97.3-1009
	Prospective	0/0	-	-	15/15	100	79.6-100°
Proteus spp.	Seeded	0/0	-	-	9/9	100	70.1-100°
	Overall	0/0	-	-	24/24	100	86.2-100
	Prospective	0/0	-	-	5/5	100	56.6-100°
Salmonella spp.	Seeded	0/0	-	-	37/37	100	90.6-100°
• •	Overall	0/0	-	-	42/42	100	91.6-1009
Comption management	Prospective	0/0	-	-	11/11	100	74.1-100°
Serratia marcescens	Overall	0/0	-	-	11/11	100	74.1-100
	Prospective	3/3	100	43.9-100%	28/28	100	87.9-100°
Pseudomonas aeruginosa	Seeded	14/14	100	78.5-100%	10/10	100	72.2-100°
	Overall	17/17	100	81.6-100%	38/38	100	90.8-1009

^a One specimen had co-detection of *Klebsiella pneumoniae* group with *Pseudomonas aeruginosa.*^b Fifty-three (53) FP results due to the presence of nucleic acid from non-viable *E. coli* in the blood culture bottles.

^a Archived testing not performed for VIM with E. cloacae complex, E. coli, K. aerogenes, K. pneumoniae group, Proteus spp., Salmonella spp., S. marcescens, or P. aeruginosa; seeded testing not performed for VIM with *S. marcescens*.

^b One specimen had co-detection of *Klebsiella pneumoniae* group with *Pseudomonas aeruginosa*.

Table 62. BIOFIRE BCID2 Panel Clinical Performance Summary, mecA/C, Prospective study^a

Analyto	Positive Per	rcent Ag	reement	Negative Percent Agreement			
Analyte	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
mecA/C	195/195	100	98.1-100%	60/60	100	94.0-100%	

^a Archived and seeded testing not performed for mecA/C.

Table 63. Distribution of mecA/C in Prospective Clinical Specimens

mecA/C		S	SOC: any associated organism FDA-cleared test: <i>mecA</i>						
		Org+ / Res+	Org+ / Res-	Org -	Total				
BCID2	Org+ / Res+	171ª	0	24	195				
Panel	Org+ / Res-	0	54	6	60				
Result	Org -	4	3	811	818				
Result	Total	175	57	841	1073 ^b				
		Performance	Agreement	%	95%CI				
		Org+ / Res+	171/175	97.7	94.3-99.1%				
		Org+ / Res-	54/57	94.7	85.6-98.2%				
		Org -	811/841	96.4	95.0-97.5%				

^a Two specimens had co-detections of Staphylococcus epidermidis with Staphylococcus lugdunensis.

Table 64. Stratification of mecA/C Clinical Performance by Associated Host Organism, Prospective study^a

Analysis	Positive Per	rcent Ag	reement	Negative Percent Agreement			
Analyte	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
Overall (any associated organism identified)	195/195⁵	100	98.1-100%	60/60	100	94.0-100%	
Staphylococcus epidermidis	194/194	100	98.1-100%	56/56	100	93.6-100%	
Staphylococcus lugdunensis	3/3°	100	43.9-100%	4/4	100	51.0-100%	

^a Archived and seeded testing not performed for mecA/C.

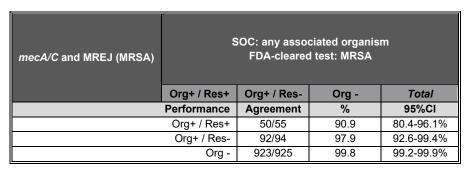
Table 65. BIOFIRE BCID2 Panel Clinical Performance Summary, mecA/C and MREJ (MRSA)

(
Analyte	Study ^a	Positive Percent Agreement			Negative Percent Agreement				
		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI		
mecA/C and MREJ (MRSA)	Prospective	52/57	91.2	81.1-96.2%	92/94	97.9	92.6-99.4%		
	Seeded	5/5	100	56.6-100%	5/5	100	56.6-100%		
	Overall	57/62 ^b	91.9	82.5-96.5%	97/99 ^c	98.0	92.9-99.4%		

^a Archived testing not performed for mecA/C and MREJ (MRSA).

Table 66. Distribution of mecA/C and MREJ (MRSA) in Prospective Clinical Specimens

mecA/C and MREJ (MRSA)		SOC: any associated organism FDA-cleared test: MRSA					
		Org+ / Res+	Org+ / Res-	Org -	Total		
BCID2	Org+ / Res+		2	2	54		
Panel	Org+ / Res-	5	92	0	97		
Result	Org -	0	0	923	923		
	Total	55	94	925	1074		


^b One specimen was FN for the associated host organism by the molecular comparator method, thus providing an "N/A" result for mecA/C.

^b Two specimens had co-detections of Staphylococcus epidermidis with Staphylococcus lugdunensis.

[°]All three specimens were identified as mixed cultures with mecA present in a different Staphylococcus species.

b Isolates recovered from the five FN specimens were identified as MSSA by SOC phenotypic AST methods.

c Isolates recovered from the two FP specimens were identified as MRSA by SOC phenotypic AST methods.

The nature of the seven discrepant results for *mecA/C* and MREJ (MRSA) between the BIOFIRE BCID2 Panel and the reference method (Cepheid Xpert® MRSA/SA BC) was investigated using various methods. As shown in Table 67, all *S. aureus* isolates recovered from the five false negative (FN) specimens were negative for the *mecA/C* genes by PCR/sequencing and had a methicillin-sensitive antimicrobial susceptibility testing (AST) phenotype, indicating MSSA rather than MRSA. From three of these specimens, the laboratory also isolated a coagulase-negative *Staphylococcus* (CoNS) that was methicillin resistant (i.e. carrying the *mecA* or *mecC* gene). Three of the five FN specimens were reported as SA (negative for MRSA) by the Cepheid Xpert® MRSA/SA BC test when residual specimen was retested.

Similarly, *S. aureus* isolates from both false positive (FP) specimens were positive for the *mecA/C* genes by PCR/sequencing and had a methicillin-resistant AST phenotype. Additionally, one of the specimens had a result of MRSA when retested by the Cepheid Xpert® MRSA/SA BC test (Table 67).

In all cases, the BIOFIRE BCID2 Panel *mecA/C* and MREJ (MRSA) results (Detected or Not Detected) were concordant with the AST phenotype of the *S. aureus* isolated from the blood culture, including instances where methicillin-resistant CoNS were also present in the specimen.

Table 67. Investigation of Specimens with Discrepant mecA/C and MREJ (MRSA) Results

ıncy	Laboratory BIOFIRE B					Investigation Summary			
Discrepancy Type ^a	Additional Staphylococci Isolated	mecA/C and MREJ (MRSA) Results (associated with TP S. aureus) ^b	MRSA/SA Results ^c	Cepheid Xpert [®] MRSA/SA BC Retest ^c	mecA/C Isolate PCR/sequencing Result	SOC Isolate AST Result (methicillin resistance phenotype) ^d			
FN	-	Not Detected	MRSA	SA	Negative	MSSA			
FN	S. haemolyticus (methicillin resistant)	Not Detected	MRSA	SA	Negative	MSSA			
FN	S. epidermidis (methicillin resistant)	Not Detected	MRSA	MRSA	Negative	MSSA			
FN	-	Not Detected	MRSA	SA	Negative	MSSA			
FN	S. epidermidis (methicillin resistant)	Not Detected	MRSA	MRSA	Negative	MSSA			
FP	-	Detected	SA	MRSA	Positive	MRSA			
FP	-	Detected	SA	SA	Positive	MRSA			

^a FN = false negative; FP = false positive

Table 68. BIOFIRE BCID2 Panel Clinical Performance Summary, mcr-1

Amplito	Study ^a	Positive Percent Agreement			Negative Percent Agreement		
Analyte		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	0/0	-	-	240/240	100	98.4-100%
mcr-1	Seeded	30/30	100	88.6-100%	189/189	100	98.0-100%
	Overall	30/30	100	88.6-100%	429/429	100	99.1-100%

^a Archived testing not performed for mcr-1.

^bTP = true positive

[°]MRSA = methicillin resistant Staphylococcus aureus; SA = Staphylococcus aureus

d SOC = standard of care; MSSA = methicillin sensitive Staphylococcus aureus; MRSA = methicillin resistant Staphylococcus aureus

Table 69. Distribution of mcr-1 in Prospective Clinical Specimens

Mcr-1			SOC: any associated organism PCR/seq: <i>mcr-1</i>				
	Org+ / Res+	Org+ / Res+	Org+ / Res-	Org -	Total		
BCID2		, ,	U		, ,		
Panel	Org+ / Res-	0	238	2	240		
Result	Org -	0	0	834	834		
Result	Total	0	238	836	1074		
		Performance	Agreement	%	95%CI		
		Org+ / Res+	0/0	-	-		
		Org+ / Res-	238/238	100	98.4-100%		
		Org -	834/836	99.8	99.1-99.9%		

Table 70. Stratification of mcr-1 Clinical Performance by Associated Host Organism, Seeded study^a

Analysta	Positive Per	rcent Ag	reement	Negative Per	reement	
Analyte	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall (any associated organism identified)	30/30	100	88.6-100%	189/189	100	98.0-100%
Enterobacter cloacae complex	0/0	-	-	8/8	100	67.6-100%
Escherichia coli	22/22	100	85.1-100%	22/22	100	85.1-100%
Klebsiella aerogenes	0/0	-	-	42/42	100	91.6-100%
Klebsiella oxytoca	0/0	-	-	6/6	100	61.0-100%
Klebsiella pneumoniae group	4/4	100	51.0-100%	88/88	100	95.8-100%
Salmonella spp.	4/4	100	51.0-100%	33/33	100	89.6-100%

^a No observations for *mcr-1* in prospective evaluation; no archived testing performed.

Table 71. BIOFIRE BCID2 Panel Clinical Performance Summary, vanA/B

Amalista	Study ^a	Positive Percent Agreement			Negative Percent Agreement		
Analyte		TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
	Prospective	23/24	95.8	79.8-99.3%	38/38	100	90.8-100%
vanA/B	Archived	16/16	100	80.6-100%	0/0	-	-
	Overall	39/40 ^b	97.5	87.1-99.6%	38/38	100	90.8-100%

^a Seeded testing not performed for vanA/B.

Table 72. Distribution of vanA/B in Prospective Clinical Specimens

Table 72. Distribution of VanA/B in Prospective Clinical Specimens								
vanA/B		S	SOC: any associated organism FDA-cleared test: <i>vanA/B</i>					
		Org+ / Res+	Org+ / Res-	Org -	Total			
BCID2	Org+ / Res+	22	0	1	23			
Panel	Org+ / Res-	1	35	3	39			
Result	Org -	0	0	1010	1010			
Nesuit	Total	23	35	1014	1072ª			
		Performance	Agreement	%	95%CI			
		Org+ / Res+	22/23	95.7	79.0-99.2%			
		Org+ / Res-	35/35	100	90.1-100%			
		Org -	1010/1014	99.6	99.0-99.8%			

^aTwo specimens were FN for the associated host organism by the molecular comparator method, thus providing an "N/A" result for *vanA/B*.

beanAB was detected in the single FN specimen upon BIOFIRE BCID2 Panel retest; the isolate recovered from this specimen was vancomycin resistant by SOC phenotypic AST methods.

RFIT-ASY-0147

Table 73. Stratification of *vanA/B* Clinical Performance by Associated Host Organism

Amplita	Cturdua	Positive Per	rcent Ag	reement	Negative Per	cent Ag	reement
Analyte	Study ^a	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall	Prospective	23/24	95.8	79.8-99.3%	38/38	100	90.8-100%
(any associated organism identified)	Archived	16/16	100	80.6-100%	0/0	-	-
(any associated organism identined)	Overall	39/40	97.5	87.1-99.6%	38/38	100	90.8-100%
	Prospective	1/1	100	-	31/31	100	89.0-100%
Enterococcus faecalis	Archived	2/2	100	34.2-100%	0/0	-	-
	Overall	3/3	100	43.9-100%	31/31	100	89.0-100%
	Prospective	22/23	95.7	79.0-99.2%	7/7	100	64.6-100%
Enterococcus faecium	Archived	14/14	100	78.5-100%	0/0	-	-
	Overall	36/37	97.3	86.2-99.5%	7/7	100	64.6-100%

^a Seeded testing not performed for vanA/B.

For prospective specimens only, the correlation of the AMR gene results reported in the specimen by the BIOFIRE BCID2 Panel to the identification of the gene in the cultured isolates from that particular specimen was assessed using one polymerase chain reaction (PCR) assay followed by bidirectional sequencing, performed directly on the isolate. The results are shown only for isolates recovered from specimens with true positive results (i.e. concordant results between BIOFIRE BCID2 Panel and culture), and further stratified by each applicable host organism recovered from that specimen. There were no observations by either the BIOFIRE BCID2 Panel or the reference/comparator methods for IMP, OXA-48-like, and *mcr-1*; therefore, performance tables are not shown for these analytes. Performance for the remaining analytes is presented in Table 74 through Table 77.

REF

RFIT-ASY-0147

Table 74. CTX-M and Select Carbapenem Resistance Genes Performance Table (as compared to PCR/seq on cultured isolate(s) from prospective PBC specimens)

Organism Identified by SOC and Detected by the BIOFIRE BCID2 Panel	N		X-M		PC		DM		IM	Ove	e rall ance gene)
		PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA
Overall (any associated organism identified)	317	46/46 (100%)	267/271 (98.5%)	4/4 (100%)	313/313 (100%)	1/1 (100%)	315/316 (99.7%)	4/4 (100%)	312/313 (99.7%)	53/53 (100%) [93.2-100%]	261/264 (98.9%) [96.7-99.6%]
Acinetobacter calcoaceticus-baumannii complex	12	0/0 (-)	11/12 (91.7%)	0/0 (-)	12/12 (100%)	0/0 (-)	12/12 (100%)	0/0 (-)	12/12 (100%)	0/0 (-)	11/12 (91.7%)
Enterobacterales	276	46/46 (100%)	229/230 (99.6%)	4/4 (100%)	272/272 (100%)	1/1 (100%)	275/275 (100%)	1/1 (100%)	274/275 (99.6%)	50/50° (100%)	225/226 (99.6%)
Enterobacter cloacae complex	16	0/0 (-)	16/16 (100%)	0/0 (-)	16/16 (100%)	0/0 (-)	16/16 (100%)	0/0 (-)	16/16 (100%)	0/0 (-)	16/16 (100%)
Escherichia coli	158	30/30 (100%)	128/128 (100%)	0/0 (-)	158/158 (100%)	0/0 (-)	158/158 (100%)	0/0 (-)	158/158 (100%)	30/30 (100%)	128/128 (100%)
Klebsiella aerogenes	2	0/0 (-)	1/2 (50.0%)	0/0 (-)	2/2 (100%)	0/0 (-)	2/2 (100%)	0/0 (-)	2/2 (100%)	0/0 (-)	1/2 (50.0%)
Klebsiella oxytoca	8	0/0 (-)	8/8 (100%)	0/0 (-)	8/8 (100%)	0/0 (-)	8/8 (100%)	0/0 (-)	8/8 (100%)	0/0 (-)	8/8 (100%)

Organism Identified by SOC and Detected by the BIOFIRE BCID2 Panel	N	ст	X-M	K	PC	NI	OM	V	IM		erall tance gene)
		PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA
Klebsiella pneumoniae group	55	12/12 (100%)	43/43 (100%)	4/4 (100%)	51/51 (100%)	1/1 (100%)	54/54 (100%)	1/1 (100%)	53/54 (98.1%)	16/16ª (100%)	39/39 (100%)
Proteus spp.	14	4/4 (100%)	10/10 (100%)	0/0 (-)	14/14 (100%)	0/0 (-)	14/14 (100%)	0/0 (-)	14/14 (100%)	4/4 (100%)	10/10 (100%)
Salmonella spp.	5	0/0 (-)	5/5 (100%)	0/0 (-)	5/5 (100%)	0/0 (-)	5/5 (100%)	0/0 (-)	5/5 (100%)	0/0 (-)	5/5 (100%)
Serratia marcescens	11	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)
Pseudomonas aeruginosa	29	0/0 (-)	27/29 (93.1%)	0/0 (-)	29/29 (100%)	0/0 (-)	28/29 (96.6%)	3/3 (100%)	26/26 (100%)	3/3 (100%)	25/26 (96.2%)

^a Two K. pneumoniae group isolates had the presence of dual AMR genes as determined by PCR (one CTX-M and NDM; one CTX-M and VIM).

RFIT-ASY-0147

Table 75. mecA/C Performance Table (as compared to PCR/seq on cultured isolate(s) from prospective PBC specimens)

Organism Identified by SOC	Positive P	ercent A	greement	Negative Po	ercent A	Agreement
and Detected by the BCID2 Panel	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall (any associated organism identified)	162/165	98.2	94.8-99.4%	51/60	85.0	73.9-91.9%
Staphylococcus epidermidis	162/165	98.2	94.8-99.4%	47/56	83.9	72.2-91.3%
Staphylococcus lugdunensis	0/0	-	-	4/4	100	51.0-100%

Table 76. mecA/C and MREJ (MRSA) Performance Table (as compared to PCR/seq on cultured isolate(s) from prospective PBC specimens)

Organism Identified by SOC	Positive P	ercent A	greement	Negative Pe	ercent A	Agreement
and Detected by the BCID2 Panel	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Staphylococcus aureus	52/52	100	93.1-100%	97/97	100	96.2-100%

Table 77. vanA/B Performance Table (as compared to PCR/seq on cultured isolate(s) from prospective PBC specimens)

Organism Identified by SOC	Positive P	ercent A	greement	Negative Pe	ercent A	Agreement
and Detected by the BCID2 Panel	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall (any associated organism identified)	22/23	95.7	79.0-99.2%	35/35	100	90.1-100%
Enterococcus faecalis	1/1	100	-	30/30	100	88.6-100%
Enterococcus faecium	21/22	95.5	78.2-99.2%	5/5	100	56.6-100%

For prospective specimens, the BIOFIRE BCID2 Panel AMR gene reporting in the specimen was also compared to phenotypic antimicrobial susceptibility testing (AST) methods performed on organism isolates recovered from those specimens. The results presented in Table 78 through Table 83 are only for specimens with concordant (true positive) results and are further stratified by each applicable host organism recovered from that specimen. Note that antimicrobial resistance, particularly extended-spectrum β-lactamase (ESBL) activity and carbapenem resistance, may be due to mechanisms other than the presence of the AMR genes detected by the BIOFIRE BCID2 Panel. Conversely, the detection of these genes may not always confer an antimicrobial resistance phenotype. Additionally, discordant results between *mecA/C* detection in a blood culture specimen by the BIOFIRE BCID2 Panel and the observed methicillin (oxacillin/cefoxitin) resistance of cultured *Staphylococcus* isolates may be due to polymicrobial *Staphylococcus* cultures containing a mixture of resistant and sensitive organisms.

Table 78. CTX-M Performance Table (as compared to phenotypic AST methods for ESBL activity on cultured isolate(s) from prospective PBC specimens)

			PBC speci	mens)				
Owner ions Identified by COC	N		Positive P	ercent A	Agreement	Negative P	ercent A	Agreement
Organism Identified by SOC and Detected by the BCID2 Panel	IESBI	Non-	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall (any associated organism identified)	313 46	267	43/46	93.5	82.5-97.8%	260/267	97.4	94.7-98.7%
Acinetobacter calcoaceticus-baumannii complex	0 12	12	0/0	1	-	11/12	91.7	64.6-98.5%
Enterobacterales	273 46	227	43/46	93.5	82.5-97.8%	223/227	98.2	95.6-99.3%
Enterobacter cloacae complex	16 0	16	0/0	-	-	16/16	100	80.6-100%
Escherichia coli	157 30	127	30/30	100	88.6-100%	127/127	100	97.1-100%
Klebsiella aerogenes	0	2	0/0	-	-	1/2	50.0	-
Klebsiella oxytoca	1	7	0/1	0	-	7/7	100	64.6-100%
Klebsiella pneumoniae group	54 11	43	10/11	90.9	62.3-98.4%	41/43	95.3	84.5-98.7%

Page 76 of 121

Organism Identified by SOC	N	ı	Positive P	ercent A	Agreement	Negative Percent Agreement			
and Detected by the BCID2 Panel	ESBL	Non- ESBL	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI	
Proteus spp.	4	4 10	3/4	75.0	30.1-95.4%	9/10	90.0	59.6-98.2%	
Salmonella spp.	0	5	0/0	-	-	5/5	100	56.6-100%	
Serratia marcescens	0	1 11	0/0	-	-	11/11	100	74.1-100%	
Pseudomonas aeruginosa	0	8 28	0/0	-	-	26/28	92.9	77.4-98.0%	

RFIT-ASY-0147

Table 79. Carbapenem Resistance Genes Performance Table (as compared to phenotypic AST methods for carbapenem resistance on cultured isolate(s) from prospective PBC specimens)

Organism Identified by SOC and Detected by BIOFIRE BCID2 Panel		N		/IP		PC		ЭΜ		48-like		IM	Ove	e rall ance gene)
	R	S	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA
Overall (any associated organism identified)	3:	13 <i>288</i>	0/25 (0%)	288/288 (100%)	4/25 (16.0%)	288/288 (100%)	2/25 (8.0%)	288/288 (100%)	0/6 (0%)	267/267 (100%)	4/25 (16.0%)	287/288 (99.7%)	8/25 (32.0%) [17.2-51.6%]	287/288 (99.7%) [98.1-99.9%]
Acinetobacter calcoaceticus-baumannii	_	2	0/12	0/0	0/12	0/0	0/12	0/0	NI/A	NI/A	0/12	0/0	0/12	0/0
complex	12	0	(0%)	(-)	(0%)	(-)	(0%)	(-)	N/A	N/A	(0%)	(-)	(0%)	(-)
Enterobacterales	2	73	0/6	267/267	4/6	267/267	1/6	267/267	0/6	267/267	1/6	266/267	5/6ª	266/267
Enteropacterales	6	267	(0%)	(100%)	(66.7%)	(100%)	(16.7%)	(100%)	(0%)	(100%)	(16.7%)	(99.6%)	(83.3%)	(99.6%)
Enterobacter cloacae complex	1	6	0/0	16/16	0/0	16/16	0/0	16/16	0/0	16/16	0/0	16/16	0/0	16/16
Enterobacter croacae complex	0	16	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)
Escherichia coli	1:	57	0/0	157/157	0/0	157/157	0/0	157/157	0/0	157/157	0/0	157/157	0/0	157/157
Loonerionia dell'	0	157	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)
Klebsiella aerogenes		2	0/0	2/2	0/0	2/2	0/0	2/2	0/0	2/2	0/0	2/2	0/0	2/2
r deserma deregeries	0	2	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)
Klebsiella oxytoca	1	8	0/0	8/8	0/0	8/8	0/0	8/8	0/0	8/8	0/0	8/8	0/0	8/8
	0	8	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)
Klebsiella pneumoniae group	_	54	0/6	48/48	4/6	48/48	1/6	48/48	0/6	48/48	1/6	47/48	5/6ª	47/48
, 3 1	6	48	(0%)	(100%)	(66.7%)	(100%)	(16.7%)	(100%)	(0%)	(100%)	(16.7%)	(97.9%)	(83.3%)	(97.9%)
Proteus spp.	1	4	0/0	14/14	0/0	14/14	0/0	14/14	0/0	14/14	0/0	14/14	0/0	14/14
	0	14	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)
Salmonella spp.	1	5 I -	0/0	5/5	0/0	5/5	0/0	5/5	0/0	5/5	0/0	5/5	0/0	5/5
	0	5	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)	(-)	(100%)
Serratia marcescens	0	1 11	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)	0/0 (-)	11/11 (100%)
	_	28	0/7	21/21	0/7	21/21	1/7	21/21		,	3/7	21/21	3/7 ^b	21/21
Pseudomonas aeruginosa	7	21	(0%)	(100%)	(0%)	(100%)	(14.3%)	(100%)	N/A	N/A	(42.9%)	(100%)	(42.9%)	(100%)

^a One *K. pneumoniae* group isolate had the presence of dual AMR genes as determined by the BCID2 Panel (NDM and VIM). ^b One *P. aeruginosa* isolate had the presence of dual AMR genes as determined by the BCID2 Panel (NDM and VIM).

REF

RFIT-ASY-0147

Table 80. mecA/C Performance Table (as compared to phenotypic AST methods for methicillin (oxacillin/cefoxitin) resistance on cultured isolate(s) from prospective PBC specimens)

			10(0) o p. 00p					
Organism Identified by SOC	1	1	Positive F	Percent A	greement	Negative Po	ercent A	Agreement
and Detected by the BCID2 Panel	R	S	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall	2	25	160/164	97.6	93.9-99.0%	50/61	82.0	70.5-89.6%
(any associated organism identified)	164	61	100/104	97.0	93.9-99.070	30/01	02.0	70.3-09.078
Staphylococcus epidermidis	22 163	21 58	160/163	98.2	94.7-99.4%	47/58	81.0	69.1-89.1%
Staphylococcus lugdunensis	1	4 3	0/1	0	-	3/3	100	43.9-100%

Table 81. mecA/C and MREJ (MRSA) Performance Table (as compared to phenotypic AST methods for methicillin (oxacillin/cefoxitin) resistance on cultured isolate(s) from prospective PBC specimens)

Organism Identified by SOC	N	1	Positive P	ercent A	greement	Negative Po	ercent A	Agreement
and Detected by the BCID2 Panel	R	S	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Staphylococcus aureus		19 97	52/52	100	93.1-100%	97/97	100	96.2-100%

Table 82. mcr-1 Performance Table (as compared to phenotypic AST methods for colistin on cultured isolate(s) from prospective PBC specimens)^a

Organism Identified by SOC and Detected by BIOFIRE BCID2 Panel	MIC ^ь (μg/mL)	N
	0.25	242
	0.5	241
Overall	1	112
(any associated organism identified)	2	21
	4	8
	>4	6
	0.25	16
	0.5	15
Enterobacter cloacae complex	1	12
Interopacier cioacae complex	2	5
	4	2
	>4	2
	0.25	157
	0.5	157
-achariahia aali	1	60
Escherichia coli	2	7
	4	3
	>4	2
	0.25	2
	0.5	2
(I = I = I = II = = = = = = = = = = = =	1	1
(lebsiella aerogenes	2	1
	4	0
	>4	0
	0.25	8
	0.5	8
(labaialla ayudaaa	1	5
(lebsiella oxytoca	2	1
	4	1
	>4	1
	0.25	54
	0.5	54
//- - - - - - - - - - - - - -	1	29
Klebsiella pneumoniae group	2	6
	4	1
	>4	1
	0.25	5
	0.5	5
Salmonella spp.	1	5
	2	1

Organism Identified by SOC and Detected by BIOFIRE BCID2 Panel	MIC ^b (µg/mL)	N
	4	1
	>4	0

^a No *mcr-1* specimens were identified by the BIOFIRE BCID2 Panel in the prospective clinical evaluation.

Table 83. vanA/B Performance Table (as compared to phenotypic AST methods for vancomycin resistance on cultured isolate(s) from prospective PBC specimens)

Organism Identified by SOC		٧	Positive Percent Agreement		Negative Percent Agreement		Agreement	
and Detected by the BCID2 Panel	R	S	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI
Overall (any associated organism identified)	22	8 36	21/22	95.5	78.2-99.2%	35/36	97.2	85.8-99.5%
Enterococcus faecalis	3 1	30	1/1	100	-	30/30	100	88.6-100%
Enterococcus faecium	21 21	6	20/21	95.2	77.3-99.2%	5/6	83.3	43.6-97.0%

The overall success rate for initial specimen tests in all three clinical studies was 99.4% (2042/2055). Eight tests (8/2055; 0.4%) did not complete on the initial test attempt, resulting in an instrument success rate of 99.6% (2047/2055) for initial specimen tests. Seven of the eight specimens were able to be retested and valid results were produced after a single retest. Of the 2047 tests that successfully produced a completed run on the initial test, 2042 had valid pouch controls. This represents a 99.8% (2042/2047) success rate for pouch controls in completed runs in the initial specimen tests. The five specimens with invalid control(s) were able to be retested and valid results were produced on the first retest.

Evaluation of Blood Culture Bottle Types

The BIOFIRE BCID2 Panel was tested for compatibility with thirteen different blood culture bottles types. Over 35 different bacterial or yeast isolates were each mixed with human whole blood (acid citrate dextrose anticoagulant), seeded directly into a blood culture bottle (≤300 CFU/bottle), and incubated for growth in a continuous monitoring blood culture system (or standard incubator for the VersaTREK bottles) until indicated as positive for growth. For each positive bottle (note that some isolates did not grow to positivity in every bottle type), the sample was tested with the BIOFIRE BCID2 Panel and was plate enumerated to determine the concentration of organism in the bottle. Samples were collected, tested, and enumerated within one hour of positive bottle indication and 24 hours after positive bottle indication (+24h).

The correct organism (and AMR gene) detection was reported by the BIOFIRE BCID2 Panel for every positive bottle tested at the positive bottle indication and 24 hours after positivity (815/815 = 100%; Table 84) for all bottle types evaluated.

Table 84. Compatibility of the BIOFIRE BCID2 Panel with Different Blood Culture Bottle Types

Manufacturer				Seeded Organism			
System	Bottle Type		Time Point	Gram-positive Bacteria	Gram-negative Bacteria	Yeast	
		BACT/ALERT® SA	Bottle Positive	11/11	18/18	8/8	
	Aerobic	BACT/ALERT® FA Plus	Positive +24h	11/11	18/18	8/8	
	ux RT®		Bottle Positive	11/11	18/18	8/8	
			Positive +24h	11/11	18/18	8/8	
bioMérieux BACT/ALERT®		BACT/ALERT® SN	Bottle Positive	11/11	19/19	7/7	
VIRTUO®		BACI/ALERI SN	Positive +24h	11/11	19/19	7/7	
	Allaelobic	BACT/ALERT® FN Plus	Bottle Positive	10/10	15/15	2/2	
			Positive +24h	10/10	15/15	3/3	
	Pediatric	BACT/ALERT® PF Plus	Bottle Positive	11/11	18/18	8/8	
	Pediatric	DACI/ALERI PF PIUS	Positive +24h	11/11	18/18	8/8	
Becton	Aerobic	BACTEC [™] Standard	Bottle Positive	11/11	18/18	7/7	

^b Minimum inhibitory concentration (MIC) values were determined using microbroth dilution. As of February 2020, the United States Food and Drug Administration has not established or recognized MIC breakpoints for colistin antimicrobial susceptibility testing (AST) related to *mcr-1*.

Manufacturer				Sec	eded Organism	
Manufacturer System		Bottle Type	Time Point	Gram-positive Bacteria	Gram-negative Bacteria	Yeast
Dickinson			Positive +24h	11/11	18/18	7/7
BACTEC™ FX40	BACTEC™ Plus+	Bottle Positive	10/10	18/18	8/8	
		BACTEC Plust	Positive +24h	10/10	18/18	8/8
		BACTEC [™] Standard	Bottle Positive	9/9	13/13	1/1
	Anaerobic	BACTEC Standard	Positive +24h	9/9	13/13	1/1
	Anaerobic	BACTEC™ Plus+	Bottle Positive	10/10	13/13	1/1
		BACTEC Plus+	Positive +24h	10/10	13/13	1/1
	Pediatric	Pediatric BACTEC [™] Peds Plus+	Bottle Positive	10/10	18/18	8/8
			Positive +24h	11/11	18/18	8/8
	Lutio	DACTEC™ Lutio	Bottle Positive	10/10	12/12	1/1
	Lytic	BACTEC™ Lytic	Positive +24h	10/10	12/12	1/1
	Aerobic	Variation DEDOY 4TM	Bottle Positive	9/9	18/18	4/4
Thermo ^a	Aerobic	VersaTREK [™] REDOX 1 [™]	Positive +24h	9/9	18/18	4/4
Scientific VersaTREK [™]	Amagrah!-	VereeTDEK™ DEDCY o™	Bottle Positive	9/9	13/13	0/0
TOIGUINER	Anaerobic	VersaTREK [™] REDOX 2 [™]	Positive +24h	9/9	13/13	1/1
# Cor	# On the Post of Brown to Francis Booking Booking			265/265 100%	422/422 100%	128/128 100%
# Cor	# Correct Detected Results/Total Positive Bottles				815/815 100%	

^a A VersaTREK system was not available for the evaluation. Seeded VersaTREK bottles were placed in a standard incubator (37°C, with or without agitation) for the average time to positivity required for the same isolate in the other bottles/systems.

The concentrations of each organism enumerated from bottles at the time of positivity and 24 hours after positivity are shown in Table 85; representing the approximate range of concentrations expected in a clinical setting for a mono-microbial blood culture.

Table 85. Concentration of Organism in a Blood Culture at Positivity and 24 Hours After Positivity (+24h)

BIOFIRE BCID2 Panel	Organism		Concentration ^a		
Analyte	[AMR Gene]	Isolate ID	Positive Bottle (CFU/mL)	+24h (CFU/mL)	
	Gram Positive Bacte				
Enterococcus faecalis	Enterococcus faecalis [vanA/B]	ATCC 51299	3.88E+08	1.16E+09	
Enterococcus faecium	Enterococcus faecium [vanA/B]	ATCC 700221	1.37E+08	7.48E+08	
Listeria monocytogenes	Listeria monocytogenes	ATCC 15313	9.28E+07	3.36E+08	
Staphylococcus spp.	Staphylococcus hominis	ATCC 25615	3.02E+06	6.52E+07	
Staphylococcus aureus	Staphylococcus aureus [mecA/C and MREJ]	ATCC BAA-38	2.88E+07	3.76E+08	
Staphylococcus epidermidis	Staphylococcus epidermidis	ATCC 12228	1.34E+07	6.19E+08	
Staphylococcus lugdunensis	Staphylococcus lugdunensis	ATCC 43809	7.05E+07	7.90E+08	
Streptococcus spp.	Streptococcus mitis	ATCC 49456	2.29E+07	1.36E+08	
Streptococcus agalactiae	Streptococcus agalactiae	ATCC 13813	3.82E+08	5.33E+08	
Streptococcus pneumoniae	Streptococcus pneumoniae	ATCC 6303	6.86E+07	4.53E+07	
Streptococcus pyogenes	Streptococcus pyogenes	ATCC 49399	2.04E+08	1.83E+08	
	Gram Negative Bacte	eria			
Acinetobacter calcoaceticus-	Acinetobacter baumannii [NDM]	CDC FDA AR Bank #0033	2.27E+08	4.22E+08	
<i>baumannii</i> complex	Acinetobacter calcoaceticus	ATCC 23055	1.23E+07	5.46E+07	
Bacteroides fragilis	Bacteroides fragilis	ATCC 25285	1.98E+08	3.00E+09	
	Citrobacter freundii	ATCC 8090	1.57E+08	1.07E+09	
Enterobacterales	Morganella morganii [CTX-M, NDM]	CDC FDA AR Bank #0057	6.73E+08	1.66E+09	
	Raoultella ornithinolytica	ATCC 31898	1.83E+08	1.18E+09	
Enterobacter cloacae complex	Enterobacter cloacae [VIM]	CDC FDA AR Bank #0154	1.20E+08	9.89E+08	
Escherichia coli	Escherichia coli [mcr-1]	CDC FDA AR Bank #0350	1.02E+08	1.25E+09	
Haemophilus influenzae	Haemophilus influenzae	ATCC 10211	3.54E+08	2.60E+08	
Klebsiella aerogenes	Klebsiella aerogenes [OXA-48-like]	CDC FDA AR Bank #0074	3.14E+08	1.63E+09	
Klebsiella oxytoca	Klebsiella oxytoca	ATCC 13182	2.68E+08	1.33E+09	
Klebsiella pneumoniae group	Klebsiella pneumoniae	CDC FDA AR Bank #0097	1.45E+08	4.31E+08	
Neisseria meningitidis	Neisseria meningitidis	ATCC 13090	2.07E+08	9.30E+07	

REF

RFIT-ASY-0147

BIOFIRE BCID2 Panel	Organism		Concentr	ration ^a
Analyte	[AMR Gene]	Isolate ID	Positive Bottle (CFU/mL)	+24h (CFU/mL)
Proteus spp.	Proteus mirabilis [CTX-M]	GRE 1254053	1.26E+08	9.17E+08
Do avido mana a comunicación	Pseudomonas aeruginosa [IMP]	CDC FDA AR Bank #0092	9.75E+07	5.87E+08
Pseudomonas aeruginosa	Pseudomonas aeruginosa	ATCC 10145	3.16E+08	9.00E+08
Salmonella spp.	Salmonella enterica [CTX-M]	CDC FDA AR Bank #0407	2.14E+08	1.33E+09
Serratia marcescens	Serratia marcescens [KPC]	JMI 697	9.09E+07	1.02E+09
Stenotrophomonas maltophilia	Stenotrophomonas maltophilia	ATCC 700475	2.80E+08	1.11E+09
	Yeast			
Candida albicans	Candida albicans	ATCC 90028	4.28E+05	6.79E+06
Candida auris	Candida auris	CDC FDA AR Bank #0381	2.81E+06	2.49E+07
Candida glabrata	Candida glabrata	ATCC 15545	1.15E+06	3.68E+07
Candida krusei	Candida krusei	ATCC 6258	9.99E+05	1.57E+07
Candida parapsilosis	Candida parapsilosis	ATCC 34136	5.96E+05	1.39E+07
Candida tropicalis	Candida tropicalis	ATCC 201380	3.77E+05	1.19E+07
0	Cryptococcus gattii	ATCC MYA-4877	4.72E+05	2.83E+06
Cryptococcus neoformans/gattii	Cryptococcus neoformans	ATCC MYA-4564	1.54E+06	9.24E+06

^a Mean concentration calculated from bottles cultured in the bioMérieux BACT/ALERT VIRTUO and Becton Dickinson BACTEC FX40 systems (VersaTREK bottle data excluded).

Limit of Detection

A limit of detection (LoD) was established for the bacteria and yeast detected by the BIOFIRE BCID2 Panel. Contrived samples of representative isolates were prepared at a known concentration in a simulated blood culture matrix consisting of human whole blood incubated with blood culture media. LoD was estimated by serial dilution and confirmed by testing at least twenty replicates on the BIOFIRE 2.0 and BIOFIRE Torch systems. Confirmation of LoD required detection in at least 95% of replicates tested and the confirmed LoD concentrations are listed in Table 86. Testing also confirmed that each AMR gene can be detected at the LoD concentration of the applicable bacteria with which it may be reported. LoD concentrations are approximately 30 - 200,000-fold lower than the concentrations measured in positive blood cultures.

Table 86. Limit of Detection (LoD) for Analytes Detected by the BIOFIRE BCID2 Panel

BIOFIRE BCID2 Panel Analyte	Organism [AMR Gene] Tested	Isolate ID	LoD Concentration (CFU/mL)	
	Gram Positive Bacteria			
Enterococcus faecalis	Enterococcus faecalis [vanB]	ATCC 51299	1.0E+05	
Enterococcus faecium	Enterococcus faecium [vanA]	ATCC 7002211	1.0E+05	
Listeria monocytogenes	Listeria monocytogenes	ATCC 15313	1.0E+04	
Staphylococcus spp.	Staphylococcus hominis	ATCC 25615	1.0E+05	
Staphylococcus aureus	Staphylococcus aureus [mecA]	ATCC BAA-38	1.0E+04 ^{aa}	
Staphylococcus aureus	Staphylococcus aureus [mecC]	ATCC BAA-2313	1.0⊑±04	
Staphylococcus epidermidis	Staphylococcus epidermidis [mecA]	ATCC 35984	1.0E+05	
Staphylococcus lugdunensis	Staphylococcus lugdunensis	ATCC 43809	1.0E+04	
Streptococcus spp.	Streptococcus mitis	ATCC 49456	1.0E+04	
Streptococcus agalactiae	Streptococcus agalactiae	ATCC 13813	5.0E+04	
Streptococcus pneumoniae	Streptococcus pneumoniae	ATCC 6303	5.0E+03	
Streptococcus pyogenes	Streptococcus pyogenes	ATCC 49399	5.0E+03	
	Gram Negative Bacteria			
Acinetobacter calcloaceticus-baumannii complex	Acinetobacter baumannii [NDM]	CDC-FDA AR Bank #0033	5.0E+03	
Bacteroides fragilis	Bacteroides fragilis	ATCC 25285	1.0E+04	
	Citrobacter freundii	ATCC 8090		
Enterobacterales	Morganella morganii	ATCC 25830	1.0E+05	
	Serratia plymuthica	ATCC 183		
Enterobacter cloacae complex	Enterobacter cloacae [VIM]	CDC-FDA AR Bank #0154	1.0E+05	
Escherichia coli	Escherichia coli [mcr-1]	CDC-FDA AR Bank #0350	5.0E+05	
Haemophilus influenzae	Haemophilus influenzae	ATCC 10211	1.0E+04	
Klebsiella aerogenes	Klebsiella aerogenes [OXA-48-like]	CDC-FDA AR Bank #0074	1.0E+05	

BIOFIRE BCID2 Panel Analyte	Organism [AMR Gene] Tested	Isolate ID	LoD Concentration (CFU/mL)	
Klebsiella oxytoca	Klebsiella oxytoca [CTX-M]	GRE 1254054	1.0E+05	
Klebsiella pneumoniae group	Klebsiella pneumoniae	ATCC 13883	5.0E+04	
Neisseria meningitidis	Neisseria meningitidis	ATCC 13090	1.0E+03	
Proteus spp.	Proteus mirabilis	ATCC 29906	5.0E+05	
Pseudomonas aeruginosa	Pseudomonas aeruginosa [IMP]	CDC-FDA AR Bank #0092	1.0E+04	
Salmonella spp.	Salmonella enterica	ATCC 700720	5.0E+04	
Serratia marcescens	Serratia marcescens [KPC]	JMI 697	1.0E+05	
Stenotrophomonas maltophilia	Stenotrophomonas maltophilia	ATCC 700475	1.0E+06	
	Yeast			
Candida albicans	Candida albicans	ATCC 90028	1.0E+03	
Candida auris	Candida auris	CDC-FDA AR Bank #0381	1.0E+03	
Candida glabrata	Candida glabrata	ATCC 15545	1.0E+02	
Candida krusei	Candida krusei	ATCC 28870	5.0E+03	
Candida parapsilosis	Candida parapsilosis	ATCC 34136	1.0E+04	
Candida tropicalis	Candida tropicalis	ATCC 201380	1.0E+04	
0	Cryptococcus gattii	ATCC MYA-4877	5.05.00	
Cryptococcus neoformans/gattii	Cryptococcus neoformans	ATCC MYA-4564	5.0E+02	

^a Confirmed LoD concentration for Staphylococcus aureus is the higher of the two LoD concentrations observed.

Analytical Reactivity (Inclusivity)

The analytical reactivity of BIOFIRE BCID2 Panel assays was assessed via a combination of *in silico* analysis of sequences available in public databases and testing of over 450 isolates representing the genetic, geographic, and temporal diversity of species, subspecies, and AMR gene types detected by the panel. Isolates were tested in triplicate at concentrations near LoD in simulated blood culture matrix.

Results for each isolate tested as well as *in silico* reactivity predictions for species or AMR gene types that were not tested are shown in Table 87 – Table 98. For isolates that were not detected at the initial near-LoD concentration, additional testing was performed at higher concentrations and the approximate concentration where detection was observed is indicated. In most cases, the detected concentration was equal to or less than the concentration expected in a positive blood culture. Alternately, a Not Detected result is indicated if the isolate was not detected at a concentration equivalent to a positive blood culture level. Additional limitations on reactivity predicted by *in silico* sequence analysis are noted.

Table 87. Results for Enterococcus faecalis Isolates Tested

Tubic of: Neodito for Enterocedus fuccuns footates resteu						
Organism	Source ID	Strain/Location/Year	Result			
	ATCC 19433	Type Strain				
	ATCC 29212	Portland				
	ATCC 49533	UWH/1936				
Enterococcus	ATCC 51299	NJ-3	Enterococcus faecalis Detected			
faecalis - -	ATCC 700802	V583	Detected			
	ATCC BAA-2573	bMx 0502240				
	JMI 12536	MA/2002				

Table 88. Results for Enterococcus faecium Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	ATCC 19434	Type Strain	
	ATCC 27270	X3 [F]	
Enterococcus	ATCC 51858	Vancomycin-dependent #4	Enterococcus
faecium	ATCC 700221	-	faecium Detected
	ATCC BAA-2318	-	
	JMI 475	IN/2003	

Table 89. Results for Listeria monocytogenes Isolates Tested

Organism	Serotype ^a	Source ID	Strain/Location/Year	Result
Listeria	1/2a	ATCC 15313	Type Strain	Listeria
monocytogenes	1/2a	ATCC 15515	United Kingdom/1924	monocytogenes

REF

RFIT-ASY-0147

Organism	Serotype ^a	Source ID	Strain/Location/Year	Result
		ATCC 19111	Li 20 United Kingdom	Detected
	1/2b	ATCC BAA-751	NSB 22072	
	4b	ATCC 13932	1071/53 Germany	
	45	ATCC 43256	CDC F2380	
	7	NCTC 10890	Li 2482 Germany	

a Assay reactivity is not serotype dependent, the assay will react with all serotypes (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, and 7).

Note: The BIOFIRE BCID2 Panel may be able to detect strains of live, attenuated Listeria monocytogenes vaccines used in cancer immunotherapy.

Table 90. Results for Staphylococcus spp. Isolates Tested and Predicted Reactivity for Species Not Tested

Organism		Source ID	Strain/Location/Year	Result
Staphylococcus argensis		In silico pred	iction (not tested)	
Staphylococcus arlettae		ATCC 43957	Type strain	
Staphylococcus auricularis		ATCC 33753	Type strain	
Staphylococcus capitis	ssp. capitis	ATCC 27842	-	
Staphylococcus capitis	ssp. urealyticus	ATCC 49326	Type strain	
Staphylococcus caprae		ATCC 55133	-	
Staphylococcus carnosus	ssp. carnosus	ATCC 51365	Type strain 1983	
Staphylococcus cohnii	ssp. cohnii	ATCC 29972	-	
Ctaphylococcus comm	ssp. urealyticus	ATCC 49330	Type strain	
Staphylococcus condimenti		CCUG 39902T	Type strain Japan	
Staphylococcus cornubiensis		In silico pred	iction (not tested)	
Staphylococcus delphini		ATCC 49171	Type strain Italy	
Staphylococcus devriesei		CCUG 58238T	Type Strain Belgium	
Staphylococcus edaphicus		•	iction (not tested)	
Staphylococcus epidermidis		ATCC 35984	Tennessee	
Staphylococcus felis		In silico prediction (not tested)		
Staphylococcus gallinarum		ATCC 700401	France	
Staphylococcus haemolyticus		ATCC 29968	-	Staphylococcus spp.
Staphylococcus hominis	ssp. hominis	ATCC 25615	-	Detected
	ssp. novobiosepticus	ATCC 700236	Type strain New Jersey1992	
Staphylococcus hyicus		ATCC 11249	Type strain	
Staphylococcus intermedius		ATCC 29663	Type strain	
Staphylococcus kloosii	Staphylococcus kloosii ATCC 43959		Type strain USA	
Staphylococcus lugdunensis		ATCC 43809	Type strain France	
Staphylococcus lutrae		ATCC 700373	Type strain	
Staphylococcus massiliensis		CCUG 55927T	Type strain France 2005	
Staphylococcus microti		-	iction (not tested)	
Staphylococcus nepalensis		CCUG 66326 ATCC 51127	Sweden 2014	
Staphylococcus pasteuri	Staphylococcus pasteuri		France	
Staphylococcus petrasii	ssp. jettensis	CCUG 62657T	Type strain Belgium	
Staphylococcus pettenkoferi		CCUG 70234	Sweden 2017	
Staphylococcus piscifermentans			iction (not tested)	
Staphylococcus pseudintermedius		ATCC 49444	-	
Staphylococcus pseudolugdunen	sis		iction (not tested)	
Staphylococcus saccharolyticus	1	ATCC 14953	Type strain	
Staphylococcus saprophyticus	ssp. saprophyticus	ATCC 15305	Type strain	

REF

RFIT-ASY-0147

Orga	nism	Source ID	Strain/Location/Year	Result	
			1935		
	ssp. coagulans	ATCC 49545	Type strain		
Staphylococcus schleiferi	ssp. schleiferi	ATCC 43808	Type strain France		
Staphylococcus sciuri	ssp. sciuri	ATCC 29061	-		
Staphylococcus simiae		GRE 1562010	Type strain Czech Republic		
Staphylococcus simulans		ATCC 27848	Type strain		
Staphylococcus stepanovicii		In silico pred	liction (not tested)		
Staphylococcus warneri		ATCC 25614	-		
Staphylococcus xylosus		ATCC 29966	-		
Staphylococcus agnetis		<i>In silico</i> pred	In silico prediction (not tested)		
Staphylococcus argenteus ^a		DSM 28299	Type strain Australia/2006		
Staphylococcus aureus ^a		Multiple isolates	-		
Staphylococcus chromogenes		ATCC 43764	Type strain	Staphylococcus spp.	
Staphylococcus sciuri	ssp. rodentium	<i>In silico</i> pred	liction (not tested)	Detected	
Staphylococcus succinus	ssp. succinus	ATCC 700337	Type strain Dominican Republic	(≥5.9E+06 CFU/mL)	
Staphylococcus schweitzeria		DSM 28300	Type strain Gabon/2010		
Staphylococcus vitulinus		ATCC 51145	Type strain		
Staphylococcus equorum		ATCC 43958	Type strain Belgium		
Staphylococcus fleurettii		DSM 20047	-		
Staphylococcus lentus		ATCC 29070	Type strain France	Not Detected	
Staphylococcus muscae Staphylococcus rostri		In silico prediction (not tested)			

^a Also amplified by the Saureus assay at lower concentrations. Will be reported as Staphylococcus spp. Detected and Staphylococcus aureus Detected.

Table 91. Results for Staphylococcus aureus Isolates Tested

Orga	nism	Source ID ^a	Strain/Location/Year	PFGE Type/ PVL (if known)	Result
	ssp. anaerobius	ATCC 35844	MVF-7/Spain	unknown	
	ATCC 10		Wood 46	unknown	
Staphylococcus		ATCC 12600	Type strain 1935	unknown	
aureus	aureus ssp. aureus	ATCC 14154	Rose	unknown	
		ATCC 25923	Seattle/1945	unknown	
		ATCC 43300	F182/Kansas	unknown	
		NARSA NRS705	NY-12	USA 100	
		ATCC BAA-41	New York/1994	USA 100/PVL-	
		NARSA NRS701	MN-082	USA 200	
	ATCC BAA-1720		MRSA252 United Kingdom	USA 200	
		ATCC BAA-1717	TCH1516/Texas	USA 300	Staphylococcus aureus Detected
	NARSA NRS6		GA-298 Georgia/2005	USA 300/PVL+	
04			CO-34	USA 300/PVL+	
Stapnylocod	ccus aureus	NARSA NRS707	NY-155 New York/2005	USA 300/PVL+	
	ATCC BAA-1707		MW2 North Dakota/1998	USA 400	
		NARSA NRS691	GA-62	USA 500	
		NARSA NRS385	-	USA 500	
		NARSA NRS648	CA-347	USA 600]
		NARSA NRS689	GA-442	USA 700	
		NARSA NRS668	CO-72	USA 800	

REF

RFIT-ASY-0147

Organism	Source ID ^a	Strain/Location/Year	PFGE Type/ PVL (if known)	Result
		Colorado/2005		
	ATCC BAA-42	HDE288 Portugal/1996	USA 800	
	ATCC BAA-1749	96:308	USA 900	
	ATCC BAA-1759	N7129	USA 900	
	NARSA NRS745	CA-629	USA 1000	
	BEI NR-46081	HIP 12899	USA 1100/PVL+	
	ATCC BAA-1765	102-04	USA 1200	
	ATCC BAA-1700	HFH-33798 Illinois/2004	Not USA 100-1100	
	ATCC BAA-1691	HFH-30137 Michigan/2003	Not USA 100-1100	
	ATCC 29213	Wichita	unknown	
	ATCC BAA-38	E2125/Denmark	unknown	
	ATCC BAA-39	HUSA304 Hungary/1993	unknown	
	ATCC BAA-40	CPS22 Portugal/1994	unknown	
	ATCC BAA-44	HPV107 Portugal/1996	PVL-	
	ATCC BAA-2312	M10/0061 Ireland/2010	unknown	
	ATCC BAA-2313	M10/0148 Ireland/2010	unknown	
	ATCC BAA-2421	Massachusetts/2010	unknown	
	ATCC BAA-2422	Massachusetts/2010	unknown	
	GRE 0759084	-	unknown	
	GRE 1055015	-	unknown	
	GRE 0860042	-	unknown	
	GRE 1052034	-	unknown	
	GRE 1151100	-	unknown	
	GRE 0960006	-	unknown	
	GRE 1055017	-	unknown	
	GRE 0759163	-	unknown	
	GRE 1062373	-	unknown	
	GRE 1057114	-	unknown	
	GRE 1062292	-	unknown	
	NARSA NRS686	-	unknown	
	Rennes 1060728	-	unknown	
	Sunnybrook SUN1	Toronto	unknown	
	GRE 1062264 ^b	-	unknown	Staphylococcus aureus Detected ^b (≥6.3E+05 CFU/mL)

a NARSA and BEI isolates sourced by the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) for distribution by BEI Resources, NIAID, NIH.

Table 92. Results for Staphylococcus epidermidis Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	ATCC 35984	RP62A Tennesee	
	ATCC 12228	FDA strain/PCI 1200	
Staphylococcus	ATCC 29887	255-01B	Staphylococcus epidermidis
epidermidis	ATCC 35983	RP12 Tennesee	Detected
	ATCC 51625	CCF 15990 Ohio	

b Isolate from private collection with variant sequence under assay primer(s). Similar variant sequences represent ~1% of over 10,000 S. aureus sequences evaluated.

RFIT-ASY-0147

Organism	Source ID	Strain/Location/Year	Result
	ATCC 700562	1191 Virginia/1997	

Table 93. Results for Staphylococcus lugdunensis Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	ATCC 43809	Type strain France	
Staphylococcus	NCTC 7990	Kelly United Kingdom/1949	Staphylococcus lugdunensis
lugdunensis	ATCC 49576	LRA/260.05.79	Detected
	ATCC 700328	6733	
	ATCC 700582	7829 Virginia/1997	

Table 94. Results for Streptococcus spp. Isolates Tested and Predicted Reactivity for Species Not Tested

Organisn	1	Source ID	Strain/Location/Year	Result
Streptococcus acidominimus		In silico pre	ediction (not tested)	
Streptococcus agalactiae		ATCC 13813	Type Strain	
Streptococcus anginosus		ATCC 33397	Havil	
Streptococcus australis		ATCC 700641	Type strain Australia/1987	
Streptococcus azizii		In silico pre	ediction (not tested)	
Streptococcus bovimastitidis		In silico pre	ediction (not tested)	
Streptococcus bovis		ATCC 33317	Pearl 11	
Streptococcus caballi		In silico pre	ediction (not tested)	
Streptococcus canis		ATCC 43496	Type strain Belgium/1982	
Streptococcus castoreus		<i>In silico</i> pre	ediction (not tested)	
Streptococcus constellatus		ATCC 27513	VPI 7712	
Streptococcus criceti		In silico pre	ediction (not tested)	
Streptococcus cristatus		ATCC 51100	Type strain United Kingdom	
Streptococcus cuniculi		In silico pre	ediction (not tested)	
Streptococcus devriesei		In silico prediction (not tested)		
Streptococcus didelphis		In silico prediction (not tested)		
Streptococcus downei		In silico prediction (not tested)		
Streptococcus dysgalactiae	ssp. dysgalactiae	ATCC 43078	Type strain United Kingdom/1970	Streptococcus
	ssp. equisimilis	ATCC 12388	Type strain United Kingdom/1970	spp. Detected
	ssp. equisimilis	NCTC 8543	LRA 06 11 76	
Streptococcus equinus		ATCC 9812	Type strain	
Streptococcus ferus		· · · · · · · · · · · · · · · · · · ·	ediction (not tested)	
Streptococcus gallolyticus	ssp. gallolyticus	ATCC BAA-2069	2001	
	ssp. pasteurianus	ATCC 700338	RG 1996	
Streptococcus gordonii		ATCC 10558	Type strain	
Streptococcus halotolerans		•	ediction (not tested)	
Streptococcus henryi			ediction (not tested)	
Streptococcus himalayensis		'	ediction (not tested)	
Streptococcus hongkongens		In silico prediction (not tested)		
Streptococcus hyointestinalis			In silico prediction (not tested)	
Streptococcus ictaluri	T	In silico prediction (not tested)		
Streptococcus infantarius	ssp. infantarius	ATCC BAA-102	HDP 90056	
Streptococcus iniae		In silico prediction (not tested)		
Streptococcus intermedius		ATCC 27335 1877		
Streptococcus lactarius		•	ediction (not tested)	
Streptococcus lutetiensis		'	ediction (not tested)	
Streptococcus macacae		•	ediction (not tested)	
Streptococcus marimammali	ım	•	ediction (not tested)	
Streptococcus marmotae		In silico pre	ediction (not tested)	

Page **87** of **121**

		0 10	04 : 11 4: 124	5 "
Organisn	n e	Source ID	Strain/Location/Year	Result
Streptococcus massiliensis		•	iction (not tested)	4
Streptococcus merionis		•	iction (not tested)	4
Streptococcus milleri		In silico prediction (not tested)		1
Streptococcus minor ^a			iction (not tested)	
Streptococcus mitis		ATCC 49456	Type strain	
Streptococcus mutans		ATCC 25175	Type Strain	
Streptococcus oligofermenta	ns	· · · · · · · · · · · · · · · · · · ·	iction (not tested)	_
	-	ATCC 10557	SK2	
Streptococcus oralis ^a	ssp. tigurinus	DSM 24864	Type strain Switzerland	
Streptococcus orisasini		<i>In silico</i> predi	iction (not tested)	
Streptococcus orisratti		<i>In silico</i> predi	iction (not tested)	
Streptococcus ovis		<i>In silico</i> predi	iction (not tested)	
Streptococcus parasanguinis	1	ATCC 31412	Si-1	
Streptococcus parasuis		In silico pred	iction (not tested)	1
Streptococcus parauberis		In silico pred	iction (not tested)	7
Streptococcus pasteurianus		<i>In silico</i> predi	iction (not tested)	1
Streptococcus penaeicida		<i>In silico</i> predi	iction (not tested)	1
Streptococcus peroris		ATCC 700780	Type strain Japan/1990	
Streptococcus phocae		<i>In silico</i> pred	iction (not tested)	1
Streptococcus pluranimalium		'	iction (not tested)	1
Streptococcus plurextorum		In silico prediction (not tested)		
Streptococcus pneumoniae		ATCC 33400 Type strain		1
Streptococcus porci		In silico prediction (not tested)		1
Streptococcus porcinus		In silico prediction (not tested)		1
Streptococcus pseudopneum	oniae	ATCC BAA-960 Type strain Canada/2002		-
Streptococcus pseudoporcin	us	<i>In silico</i> pred	iction (not tested)	1
Streptococcus pyogenes		ATCC 49399	QC A62	1
Streptococcus ratti		i i	iction (not tested)	1
Streptococcus respiraculi			iction (not tested)	1
Streptococcus ruminantium		'	iction (not tested)	†
оп оргововова таптатант	1_	ATCC 13419	C699	1
Streptococcus salivarius	ssp. thermophiles	ATCC 19258	Type Strain	†
Streptococcus sanguinis	oop. mermophies	ATCC 19236 ATCC 10556	Type strain	1
Streptococcus sinensis		DSM 14990	HKU4 Hong Kong	1
Streptococcys sobrinus ^a		ATCC 33478	Type strain	1
		ATCC 33476 ATCC 43765	· · · · · · · · · · · · · · · · · · ·	4
Streptococcus suis ^a Streptococcus thoraltensis			Type strain	-
		In silico prediction (not tested)		-
Streptococcus troglodytae		In silico prediction (not tested)		-
Streptococcus uberisa		In silico prediction (not tested)		-
Streptococcus urinalis Streptococcus vestibularis		In silico prediction (not tested) ATCC 49124 Type strain		-
	1 .		United Kingdom	
C4mam4a a a a a a a a a a a a a a a a a a	ssp. equi	ATCC 33398	Type strain	4
Streptococcus equi	ssp. zooepidemicus	ATCC 43079	Type strain United Kingdom	Streptococcus
Streptococcus entericus				spp. Detected
Streptococcus halitosis		In silico predi	iction (not tested)	(≥7.6E+06
Streptococcus hyovaginalis		iii siiico piedi	iodon (not tootou)	CFU/mL)
Streptococcus pantholopis				
Other Streptococcus species No Sequence (I		nce (not tested)	Unknown	

^a A small percentage of publicly available sequences for this species have sequence variation under assay primer(s) that may have an impact on detection.

REF

RFIT-ASY-0147

Table 95. Results for Streptococcus agalactiae Isolates Tested

Organism	Serotype ^a	Source ID	Strain/Location/Year	Result
	II	ATCC 13813	Type strain	
	III	ATCC 12403	Type strain	
Streptococcus agalactiae	V	ATCC BAA-611	2603 V/R	
	VIII	ATCC BAA-2669	5030-08	Streptococcus agalactiae Detected
		ATCC 12386	Grouping strain	_ 555555
	Unknown	NCTC 8017	MK 104 P	
		BF CI-2460	-	

^a Assay reactivity is not serotype-dependent, the assay will react with all serotypes.

Table 96. Results for Streptococcus pneumoniae Isolates Tested

Organism	Serotype ^a	Source ID	Strain/Location/Year	Result
	3	ATCC 6303	-	
	1	ATCC 33400	Type strain	
	5	ATCC BAA-341	SPN1439-106 Columbia/1995	
Streptococcus	14	ATCC 700672	VH14/ Spain	Streptococcus pneumoniae
pneumoniae	11A	NCTC 11900	Gorman	Detected
	19A	ATCC 700673	19A-6 Hungary/1989	
	Non-capsulated	ATCC BAA-255	R6 (non-virulent)	
	unknown	ATCC BAA-1409	62076 Canada/2005	

^a Assay reactivity is not serotype-dependent, the assay will react with all serotypes.

Table 97. Results for Streptococcus pyogenes Isolates Tested

Organism	Serotype ^a	Source ID	Strain/Location/Year	Result
	unknown	ATCC 49399	QC A62	
	unknown	ATCC 19615	Bruno	
		ATCC 12344	Type strain	
	1	ATCC 700294	SF370/M1 GAS	Streptococcus pyogenes Detected
Streptococcus		ATCC BAA-947	MGAS 5005 Canada/1996	
pyogenes	3	ATCC 12384	C203	
		ATCC BAA-595	MGAS 315 Texas 1980's	
	6	ATCC 12348	S43	
	Unknown	Clinical Isolate ^b	Missouri/2019	Not Detected

^a Assay reactivity is not serotype-dependent, the assay will react with all serotypes.

Table 98. Results for Acinetobacter calcoaceticus-baumannii complex Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	CDC FDA AR BANK #0033	-	
	ATCC 9955	6-561/Italy	
	ATCC 19606	Type strain	
	ATCC 17961	CDC 7788	
Acinetobacter baumannii	GRE 1153064	-	
	GRE 1062081	-	Acinetobacter calcoaceticus-
	ATCC 15308	Biol 1 Maryland/1949	baumannii complex Detected
	ATCC 51432	Pennsylvania	
Acinetobacter calcoaceticus	ATCC 23055	Type strain Netherlands	
	ATCC 14987	HO-1/Iowa	
	ATCC 17903	2210	

^b Isolate of *S. pyogenes* with partial gene deletion.

RFIT-ASY-0147

Organism	Source ID	Strain/Location/Year	Result
Acinetobacter nosocomialis		Rhode Island/1950	
(formerly genomospecies 13TU)	CCUG 57124	Sweden/2008	
Acinetobacter pittii	ATCC 19004	Type strain United Kingdom/1966	
(formerly genomospecies 3)	ATCC 17922	Pennsylvania	
Acinetobacter seifertii	CCUG 34785	Type strain Denmark	
Acinetobacter nosocomialis	ATCC 700472 ^a	France/1989	Not Detected
Acinetobacter dijkshoorniae	No sequence (not tested)		Unknown

^a Sequence data from this isolate suggests that it has been mischaracterized. Sequence data are not consistent with other sequences of *A. nosocomialis* nor with sequences from other species within the *Acinetobacter calcoaceticus-baumannii* complex.

Table 99. Results for Bacteroides fragilis Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
Bacteroides fragilis	ATCC 25285	Type strain United Kingdom/1955	
	ATCC 29771	2044 Florida/USA	Bacteroides fragilis
	ATCC 29768	12256	Detected
	ATCC 43937	F1355	
	ATCC BAA-2283	2-1-56 FAA	

Table 100. Results for Enterobacterales Isolates Tested and Predicted Reactivity for Species Not Tested

Genus	Organism	Source ID	Strain/Location/Year	Result
Cedeceae	Cedeceae davisae	ATCC 43023	CDC 2819-81 South Carolina	
	Cedeceae neteri	ATCC 33855	Type strain California	
	Citrobacter amalonaticus	ATCC 25405	Type strain	
	Citrobacter braakii	ATCC 51113	Type strain France	
	Citrobacter farmeri	ATCC 51112	Type strain New York	
	Citrobacter freundii	ATCC 8090	Type strain	
	Chrobacter freundi	CDC FDA AR Bank #0157	-	
	Citrobacter koseri	ATCC 27156	CDC 3613-63	
Citrobacter	Chiobacter Roseri	ATCC 29223	CDC 1378/74	
	Citrobacter murliniae	ATCC 51118	Type strain	
	Citrobacter sedlakii	ATCC 51115	Type strain France	
	Citrobacter rodentium	In silico prediction (not tested)		
	Citrobacter werkmanii	ATCC 51114	Type strain Belgium	Enterobacterales
	Citrobacter youngae	ATCC 29935	Type strain South Carolina	Detected
Cosenzaea	Cosenzaea (Proteus) myxofaciens	ATCC 19692	Type strain	
	Cronobacter condimenti	<i>In silico</i> predicti	on (not tested)	
	Cronobacter dublinensis	DSM 18706	Type strain Switzerland/2004	
Cronobacter	Cronobacter malonaticus	DSM 18702	Type strain New York	
Cronobacter	Cronobacter muytjensii	DSM 51329	Type strain France	
	Cronobacter sakazakii	ATCC 29544	Type strain	
	Cronobacter turicensis	CCUG 55852	Type strain Switzerland 2005	
	Edwardsiella anguuillarum	In silico predicti	on (not tested)	
Edwardsiella	Edwardsiella hoshinae	In silico predicti	on (not tested)	
	Edwardsiella ictaluri	<i>In silico</i> predicti	on (not tested)	
	Edwardseilla piscicida	In silico predicti	on (not tested)	

Genus	Organ	ism	Source ID	Strain/Location/Year	Result
E	Edwardsiella t	tarda	ATCC 15947	Type strain Kentucky	
	Enterobacter		DSM 29888	Type strain	
bugandensis Enterobacter		AT00.05047	Tanzania Type strain		
	cancerogenus	;	ATCC 35317	New York	
	Enterobacter roggenkampii	,	<i>In silico</i> predicti	ion (not tested)	
E	Enterobacter s	soli	ATCC BAA-2102	Type strain Peru	
E	Escherichia al	lbertii	CCUG 46494	Type strain Bangladesh	
Escherichia E	Escherichia fe	erqusonii	ATCC 35469	Type strain	
	Escherichia h		ATCC 33650	Missouri Type strain	
				Louisiana	
	Erwinia billing	ııde	In silico predicti	C2	
Hafnia	Hafnia alvei		ATCC 51815	Minnesota	
	Hafnia paralve		ATCC 29927	Type strain	
Klebsiella .	Klebsiella grin	nontii	DSM 105630	06D021	
Mensiella	Klebsiella mic	higanensis	ATCC BAA-2403	Type strain Michigan	
<u> </u>	Kluyvera asco	rbate	CDC FDA AR BANK #0144	-	
Klinggora	Kluyvera cryo		CCUG 18767T	Type strain	
Kiuyvera	Kluyvera geor	giana	In silico predicti	ion (not tested)	
r	Kluyvera inter	media	ATCC 33110	Type strain	
r	Kosakonia co	wanii	CCUG 62758	Sweden/2012	
Kosakonia	Kosakonia ory	/zae	In silico predicti	ion (not tested)	
K	Kosakonia rad	licincitans	<i>In silico</i> predicti	ion (not tested)	
Leclercia L	Leclercia adec	carboxylata	ATCC 23216	1783	
Lelliottia L	Lelliottia amni	igena	ATCC 51816	C3	
Lemotta	Leliottia nimip	pressuralis	<i>In silico</i> predicti	ion (not tested)	
Mixta N	Mixta (Pantoe	a) gaviniae	CCUG 66381	-	
	_	ssp.	ATCC 25830	M11	
	Morganella	morganii	CDC FDA AR BANK #0057	-	
<u> </u>	morganii	ssp. sibonii	ATCC 49948	CDC 8103-85	
F	Pantoea agglo	merans	ATCC 27155	CDC 1461-67	
Pantoea F	Pantoea anana	atis	<i>In silico</i> predicti	ion (not tested)	
	Pantoea septi		CCUG 67124	-	
	Phytobacter u		In silico predicti	,	
	Plesiomonas	shigelloides	ATCC 51572	CIP 69.35	
Pluralihactor	Pluralibacter (Enterobacter)) gorgoviac	ATCC 33028	CDC 604-77	
	Enteropacter) Providencia al		ATCC 51902	GNI 3	
<u> </u>	Providencia re		ATCC 9250	NCTC 1501	
_	Providencia si	•	CDC FDA AR Bank #0026	-	
Pudoescherichia	Pseudoeschei	richia	ATCC 33821	CDC 875-72	
	(Escherichia) Rahnella aqua		ATCC 33071	CUETM 77-115	
	Raoultella orn		ATCC 33071	AST 111-4	
_	Raoultella plai	•	ATCC 31990	AST 151-7	
	Raoultella terr		ATCC 33257	Type strain	
	Serratia aquat		DSM 100980	2015-2462-01	
_	Serratia enton		ATCC 43705	Type strain	
	Serratia ficaria	-	In silico predicti	3 1	
L ²			ATCC 29844	CUETM 77-165	
Serratia S	Serratia fonticola				
	Serratia grime	sii	In silico predicti	ion (not tested)	
S			In silico predicti ATCC 27592	ion (not tested) CDC 1284-57	

REF

RFIT-ASY-0147

Genus	Organism	Source ID	Strain/Location/Year	Result
	Serratia plymuthica	ATCC 183	K-7	
	Serratia proteamaculans	<i>In silico</i> predic	tion (not tested)	
	Serratia rubidaea	ATCC 27593	2199-72	
Sodalis	Sodalis praecaptivus	In silico predic	tion (not tested)	
	Shigella boydii	ATCC 9207	AMC 43-G-58	
Chimalla	Shigella dysenteriae	ATCC 13313	Strain Newcastle	
Shigella	Shigella flexneri	CDC FDA AR Bank #0421	-	
	Shigella sonnei	ATCC 29930	WRAIR I virulent	
Tatumella	Tatumella ptyseos	ATCC 33301	H36	
Trabulsiella	Trabulsiella guamensis ^a	ATCC 49490	Type strain	
	Yersinia aldovae	<i>In silico</i> predic	tion (not tested)	
	Yersinia aleksiciae	<i>In silico</i> predic	tion (not tested)	
	Yersinia enterocolitica	ATCC 9610	33114	
	Yersinia entomophage	In silico prediction (not tested)		
	Yersinia frederiksenii	ATCC 33641	CDC 1461-81	
	Yersinia intermedia	ATCC 33647	CDC 870-77	
Yersinia	Yersinia kristensenii	ATCC 33639	CDC 1459-81	
	Yersinia massiliensis	<i>In silico</i> predic	tion (not tested)	
	Yersinia mollaretii	ATCC 43969	CDC 2465-87	
	Yersinia pestis	In silico prediction (not tested)		
	Yersinia rohdei	In silico prediction (not tested)		
	Yersinia ruckeri	<i>In silico</i> predic	tion (not tested)	
	Yersinia similis	<i>In silico</i> predic	tion (not tested)	
Yokenella	Yokenella regensburgei	ATCC 35313	CDC 3349-72	
Mixta	Mixta (Pantoea) calida	CCUG 68064	-	Enterobacterales Detected
Yersinia	Yersinia pseudotuberculosis	ATCC 29833	NCTC 10275	(≥1.1E+07 CFU/mL)
Photorabdus	Photorabdus asymbiotica	ATCC 43950	3265-86	
Arsenophonus	Arsenophonus nasoniae	In silico predic	tion (not tested)	Not Detected
Providencia	Providencia heimbachae	In silico predic	tion (not tested)	
her <i>Enterobacte</i>	rales species	In silico prediction (not tested) or		Detected or
·		No sequence (not tested)		Unknown

^a Only tested at high concentration (>1.0E+09 CFU/mL), expected to be detected at positive blood culture levels and lower.

Table 101. Results for Enterobacter cloacae complex Isolates Tested

	Organism	Source ID	Strain/Location/Year	Result
Enterd	obacter asburiae	GRE 1753006	-	
		CDC FDA AR Bank #0154	-	
		CDC FDA AR Bank #0501	-	
	-	ATCC 49141	AmMS 204	
Enterobacter		ATCC BAA-2341	1101152	
cloacae		NCTC 13464	-	
	con classes	ATCC 13047	Type strain	
	ssp. cloacae	ATCC BAA-1143	Entb 55M	Enterobacter
	spp. dissolvens	ATCC 23373D	Type strain	cloacae
	-	ATCC BAA-2082	-	complex
		CCUG 53905T	Type strain	Detected
Enterobacter		0000 339031	Germany	
hormaechei	rmaechei ssp. steigerwalthii	CCUG 53904T	Type strain	
			Belgium	
	ssp. xiangfangensis	DSM 46348	1080M	
Ente	robacter kobei	GRE 1753004	-	
Enter	obacter ludwigii	CCUG 23050	Sweden	
Ente	erobacter mori	DSM 26271	Type strain/R18-2	
		ATCC 35953	CDC 1497-78	Enterobacter
		ATCC 33933	Rhode Island	cloacae
Enterd	obacter asburiae	ATCC 35954	Type strain	complex
		ATCC 35954	Maryland	Detected
		ATCC 35955	In silico prediction	(≥1.6E+07 CFU/mL)

RFIT-ASY-0147

	Organism	Source ID	Strain/Location/Year	Result
			(not tested)	
		ATCC 35957	CDC 570-83 Hawaii	
		GRE 0758100	-	
Enterobacter hormaechei	ssp. hormaechei	ATCC 49162	Type strain California	

Table 102. Results for Escherichia coli Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	CDC FDA AR BANK #0061	-	
	CDC FDA AR BANK #0086	-	
	CDC FDA AR BANK #0137	-	
	CDC FDA AR BANK #0149	-	
	CDC FDA AR BANK #0150	-	
	CDC FDA AR BANK #0346	-	
Escherichia coli	CDC FDA AR BANK #0349	-	Escherichia coli Detected
Escherichia con	CDC FDA AR BANK #0350	-	Eschencina con Detected
	CDC FDA AR BANK #0495	-	
	ATCC 11775	Type strain	
	ATCC 25922	DA strain Seattle 1946	
	GRE 1062016	-	
	GRE 1256018	-	

Table 103. Results for Klebsiella aerogenes Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	CDC FDA AR Bank #0062	-	
	CDC FDA AR Bank #0074	-	
Viabaialla aavanana	CDC FDA AR Bank #0161	-	Klebsiella aerogenes
Klebsiella aerogenes	ATCC 13048	Type strain	Detected
	ATCC 29751	MULB-250	
	GRE 1254066	-	1

Table 104. Results for Klebsiella oxytoca Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	CDC FDA AR Bank #0147	-	
	ATCC 8724	NRRL B-199	
	ATCC 13182	Type strain	
	ATCC 43086	Pasco 201 California	Klebsiella oxytoca
Klebsiella oxytoca	ATCC 49131	AmMS 101	Detected
	ATCC 700324	LBM 90.11.033	
	GRE 1254054	-	
	JMI 2523	-	
	JMI 7818	-	

Table 105. Results for Klebsiella pneumoniae group Isolates Tested

Org	ganism	Source ID	Strain/Location/Year	Result
		GRE 1553001	-	
		CDC FDA AR Bank #0040	-	
		CDC FDA AR Bank #0068	-	
		CDC FDA AR Bank #0076	-	
		CDC FDA AR Bank #0079	-	Klabajalla mmanmaniaa
Klebsiella		CDC FDA AR Bank #0080	-	Klebsiella pneumoniae
pneumoniae	-	CDC FDA AR Bank #0107	-	group Detected
		CDC FDA AR Bank #0497	-	Detected
		CDC FDA AR Bank #0525	-	
		ATCC BAA-1705	ART 2008133	
		GRE 1062084	-	
		GRE 1355030	-	

RFIT-ASY-0147

Or	ganism	Source ID	Strain/Location/Year	Result
		JMI 766	-	
		CDC FDA AR Bank #0051	-	
		CDC FDA AR Bank #0096	-	
	ssp. ozanae	ATCC 11296	Type strain Sumatra/Indonesia	
	ssp. pneumoniae	ATCC 13883	Type strain	
	ssp. rhinoscleromatis	ATCC 13884	Type strain Sumatra/Indonesia	
		ATCC 700603	K6	
Klebsiella	ssp. similipneumoniae	DSM 28212	Type strain Germany/1997	
	ssp. quasipneumoniae	DSM 28211	Type strain Austria/1997	
Klebsie	lla variicola	ATCC BAA-830	Type strain Mexico/2001	

Table 106. Results for *Proteus* spp. Isolates Tested and Predicted Reactivity for Species Not Tested

Organism	Source ID	Strain/Location/Year	Result
Proteus alimentorum	In silico predic	tion (not tested)	
Proteus cibarius	In silico prediction (not tested)		
Proteus columbae	In silico predic	tion (not tested)	
	ATCC 13315	strain Lehmann	
Proteus hauseri	ATCC 700826	Type strain Tennessee	
	CDC FDA AR Bank #0155	-	
	CDC FDA AR Bank #0156	-	
Proteus mirabilis	CDC FDA AR Bank #0159	-	Proteus
Proteus Illirabilis	ATCC 29906	Type strain	
	ATCC 33583	571101	spp. Detected
	GRE 1254053	1	Detected
	ATCC 33519	Type strain Illinois	
Proteus penneri	ATCC 35197	CDC 1655-67 Maryland	
	ATCC 27973	CDC 1787-64-SC1 Connecticut	
Proteus terrae	In silico prediction (not tested)		
Proteus vulgaris	ATCC 29905	Type strain	

Table 107. Results for Salmonella spp. Isolates Tested

Organism (alternate ssp. designation)		Serotype	Source ID	Strain/Location/Year	Result
-		Brookfield	NCTC 10946	-	
	Salmonella bongori (V)		SGSC 3100 SARC11	CDC 750-72 1972	
		1	ATCC 43975	Type strain	
	ssp. <i>arizonae</i> (IIIa)	-	ATCC 13314	Type strain	
	ssp. diarizonae (IIIb)	-	SGSC 3069 SARC8	CDC 678-94 California/1984	
		Concord	CDC FDA AR Bank #0407	-	
		Enteritidis	ATCC BAA-708	-	Salmonella
		Heidelberg	SGSC 2210 SARA30	Pennsylvania/1987	spp. Detected
Salmonella enterica		Infantis	ATCC BAA-1675	MZ1479 Senegal	Detected
	ssp. enterica (I)	Montevideo	ATCC BAA-710	G4639 1993	
		Newport	ATCC 27869	C487-69	
		Senftenberg	CDC FDA AR Bank #0127	-	
		Typhimurium	ATCC 700720	1948	
		Typhimurium	SGSC 3029 SARC1	England/1958	
	ssp. houtenae (IV)	45a,b:g, z51:-	SGSC 3074 SARC9	CDC 2584-68 Panama/1968	

RFIT-ASY-0147

_	anism p. designation)	Serotype	Source ID	Strain/Location/Year	Result
	ssp. <i>indica</i> (VI)	45:a:e,n,x	SGSC 3116 SARC13	CDC 1363-65 India 1965	
	ssp. <i>salama</i> e (II)	42:f:g,t:-	SGSC 3047 SARC4	CDC3472-64 1964	

Table 108. Results for Serratia marcescens Isolates Tested

Or	Organism		Strain/Location/Year	Result
		CDC FDA AR Bank #0517	-	
		ATCC 27137	CDC 3100-71 Colorado	
	-	GRE 1659004	-	
Serratia		GRE 1659006	-	Serratia marcescens Detected
marcescens		JMI 697	-	
marcescens	ssp marcescens	ATCC 13880	Type strain	
		ATCC 43297	3G Belgium	
	ssp. sakuensis	ATCC BAA-885	Type strain Japan 1992	

Table 109. Results for Haemophilus influenzae Isolates Tested

Table 105. Results for The mophinus Innuenzae Isolates Tested				
Organism	Serotype ^a	Source ID	Strain/Location/Year	Result
	Type a	ATCC 9006	AMC 36-A-3	
	Type b	ATCC 10211	AMC 36-A-1	
	Type c	ATCC 49699	C 9007	
	Type d	ATCC 9008	AMC 36-A-6	
Haemophilus influenzae	Type e	ATCC 8142	AMC 36-A-7	Haemophilus
	Type f	ATCC 700223	GA1264/Georgia	influenzae
		ATCC 33391	Type strain United Kingdom/1950	Detected
	Non-typeable	ATCC 51907	Rd [KW20]	
		ATCC 51997	INT 1 Missouri	
	Unknown	Clinical Isolate ^b	Utah/2012	Not Detected

^a Assay reactivity is not serotype-dependent, the assay will react with all types and non-typeable isolates.

Table 110. Results for Neisseria meningitidis Isolates Tested

Organism	Serotype ^a	Source ID	Strain/Location/Year	Result
	A	ATCC 13077	M1027 Chicago/1937	
	В	ATCC 13090	M2092 Massachusetts	
Neisseria meningitidis	С	ATCC 13102	M1628 Connecticut/1949	Neisseria meningitidis Detected
(encapsulated)	D	ATCC 13113	M158/[37A] 1955	Detected
	W-135 ATCC 43744	M-1574 Illinois		
	Y	ATCC 35561	M-112/[BO-6]	

^a Assay reactivity is not serotype-dependent, the assay will react with all serotypes.

Table 111. Results for Pseudomonas aeruginosa Isolates Tested

Table 111. Results for 1 seadomonas deruginosa isolates rested					
Organism	Source ID	Strain/Location/Year	Result		
	CDC FDA AR BANK #0092	-			
	CDC FDA AR BANK #0054	-			
Pseudomonas	CDC FDA AR BANK #0100	-	Pseudomonas aeruginosa		
aeruginosa	CDC FDA AR BANK #0103	-	Detected		
	CDC FDA AR BANK #0239	-			
	ATCC 10145	Type strain			

^b Clinical isolate of *H. influenzae* with partial gene deletion.

REF

RFIT-ASY-0147

Organism	Source ID	Strain/Location/Year	Result
		Czechoslovakia/1963	
	ATCC 19429	Radlett Feb	
	ATCC 19429	United Kingdom	
	ATCC 27853	41501	
	A100 21000	Boston	
	CUSM PS28	-	
	NCTC 13437	United Kingdom	
	ATCC 9027	IFO 13275	Pseudomonas aeruginosa Detected (3.1E+05 CFU/mL)
	ATCC 25619 ^a	-	Not Detected ^a

^a This isolate and a subset of *P. aeruginosa* sequences (<1% of total sequences) have critical mismatches to assay primer(s) and will not be detected.

Table 112. Results for Stenotrophomonas maltophilia Isolates Tested

Organism	Source ID	Strain/Location/Year	Result
	ATCC 700475	CIP 104854	
	ATCC 700269	WW Washington/1993	
Stenotrophomonas maltophilia	ATCC BAA-84	D457 Spain	Stenotrophomonas maltophilia Detected
	ATCC 13637	Type strain United States/1961	Detected
	ATCC BAA-2423	K279a	

Table 113. Results for CTX-M Isolates Tested and Predicted Reactivity for CTX-M Types^a

CTX-M Type	Organism	Source ID		Result
CTX-M-1	Klebsiella oxytoca	GRE 1254054		
CTX-M-3	Shigella flexneri	CDC FDA AR BANK #0421		
CTX-M-8	Klebsiella aerogenes	GRE 1254066		
CTX-M-9	Enterobacter cloacae	CDC FDA AR Bank #0501		
CTX-M-14	Escherichia coli	CDC FDA AR Bank #0086		
C1X-IVI-14	Klebsiella pneumoniae	CDC FDA AR Bank #0079		
CTX-M-14, -55	Escherichia coli	CDC FDA AR Bank #0349		
	Escherichia coli	CDC FDA AR BANK #0137		
	Klebsiella pneumoniae ssp. ozaenae	CDC FDA AR Bank #0051		
	Klebsiella pneumoniae	CDC FDA AR Bank #0068		CTX-M Detected
CTX-M-15	Klebsiella pneumoniae	CDC FDA AR Bank #0040		Detected
	Serratia marcescens	CDC FDA AR Bank #0517		
	Salmonella enterica ssp. enterica	CDC FDA AR Bank #0407		
	Morganella morganii	CDC FDA AR Bank #0057		
CTV M 22	Proteus mirabilis	GRE 1254053		
CTX-M-22	Klebsiella pneumoniae	CDC FDA AR Bank #0107		
CTX-M-25	Enterobacter cloacae	NCTC 13464		
CTX-M-55	Escherichia coli	CDC FDA AR Bank #0346		
CTX-M-124	Kluyvera ascorbata	CDC FDA AR Bank #0144		
	In silico R	Reactivity Predictions		
	Detected	Not Detected		Unknown (no sequence)
CTX-M-1 – CTX-M-69	CTX-M-141 - CTX-M-142	CTX-M-151	CTX-M-7	, ,
CTX-M-71 – CTX-M-117	CTX-M-144		CTX-M-1	19 CTX-M-143
CTX-M-121 - CTX-M-127	CTX-M-146 - CTX-M-148		CTX-M-1	20 CTX-M-145
CTX-M-129 - CTX-M-132	CTX-M-150		CTX-M-1	28 CTX-M-149
CTX-M-134	CTX-M-152		CTX-M-1	33 CTX-M-153
CTX-M-136 - CTX-M-139	CTX-M-155 - CTX-M-229		CTX-M-1	35 CTX-M-154

^a Isolates were tested at a concentration near the LoD for CTX-M.

Table 114. Results for IMP Isolates Tested and Predicted Reactivity for IMP Types^a

IMP Type	Organism	Source ID	Result
IMP-1	Pseudomonas aeruginosa	CDC FDA AR Bank #0103	IMP
IMP-4	Acinetobacter baumannii	GRE 1062081	Detected

REF

RFIT-ASY-0147

IMP-4	Escherichia coli	GRE 1062016	
IMP-4	Klebsiella pneumoniae	CDC FDA AR Bank #0080	
IMP-4	Klebsiella aerogenes	CDC FDA AR Bank #0161	
IMP-8	Klebsiella pneumoniae	GRE 1062084	
IMP-14	Pseudomonas aeruginosa	CDC FDA AR Bank #0092	
	In silico R	Reactivity Predictions	
	Detected	Not Detected	Unknown (no sequences)
IMP-1 – IMP-30 ^b	IMP-58 – IMP-62	IMP-10 ^b	IMP-36
IMP-32 – IMP-34	IMP-64	IMP-31	IMP-47
IMP-37 – IMP-45	IMP-66 – IMP-84	IMP-35	IMP-50
IMP-48 – IMP-49		IMP-46	IMP-57
IMP-51 – IMP-56		IMP-63	IMP-65

^a Isolates were tested at a concentration near the LoD for IMP.

Table 115. Results for KPC Isolates Tested and Predicted Reactivity for KPC Types^a

KPC Type	Organism	Source ID	Strain/Location/Year	Result	
	Klebsiella oxytoca	JMI 7818	-		
KPC-2	Klebsiella pneumoniae	ATCC BAA-1705	ART 2008133		
KPG-2	Proteus mirabilis	CDC FDA AR Bank #0156	-		
	Serratia marcescens	JMI 697	-		
	Escherichia coli	CDC FDA AR Bank #0061	-		
1/20 0	Klebsiella pneumoniae ssp. ozaenae	CDC FDA AR Bank #0096	-		
KPC-3	Klebsiella oxytoca	CDC FDA AR Bank #0147	-		
	Serratia marcescens	CDC FDA AR Bank #0517	-	KPC	
	Kluyvera ascorbata	CDC FDA AR Bank #0144	-	Detected	
KPC-4	Klebsiella pneumoniae	JMI 766	-		
KPC-5	Pseudomonas aeruginosa	Creighton University PS28	-		
KPC-6	Proteus mirabilis	CDC FDA AR Bank #0155	-		
KPC-11	Klebsiella pneumoniae	CDC FDA AR Bank #0525	-		
	Enterobacter cloacae	ATCC BAA-2341	1101152		
Unknown	Enterobacter hormaechei	ATCC BAA-2082	-		
	Klebsiella oxytoca	JMI 2523	-		
In silico Reactivity Predictions					
Detected					
	KPC-1 – KPC-46				

^a Isolates were tested at a concentration near the LoD for KPC.

Table 116. Results for mcr-1 Isolates Testeda

Organism	Source ID	Result
	CDC FDA AR Bank #0346	
Escherichia coli	CDC FDA AR Bank #0349	
	CDC FDA AR Bank #0350	mcr-1 Detected
	CDC FDA AR Bank #0495	Detected
Klebsiella pneumoniae	CDC FDA AR Bank #0497	

^a Isolates were tested at a concentration near the LoD for *mcr-1*.

Table 117. Results for mecA/C in Methicillin-resistant Staphylococcus epidermidis Isolates Testedab

Organism	Source ID	Strain/Location/Year	Result
	ATCC 29887	255-01B	
	ATCC 35983	RP12	
	A1CC 33963	Tennessee	mecA/C Detected
Ctambula a a a cua a mida maidia	ATCC 35984	RP62A	macA/C
Staphylococcus epidermidis (MRSE)	A1CC 33964	Tennessee	
(MRSE)	ATCC 51625	CCF 15990	Detected
	A100 31023	Ohio	
	ATCC 700562	1191	
	A100 700302	Virginia/1997	

^a No methicillin-resistant isolates of *Staphylococcus lugdunensis* were available for testing.

^b A subset of IMP-10 sequences (1/6) have mismatches to the assay primer(s) that may have an impact on detection.

^b Isolates were tested at a concentration near the LoD for *mecA/C*.

RI

REF

RFIT-ASY-0147

Table 118. Results for mecA/C and MREJ (MRSA) in Staphylococcus aureus Isolates Tested and Predicted Reactivity for MREJ Types^a

Organism	Source ID ^b	Strain/Location/Year	SCCmec Type/ MREJ Type	Result	
	ATCC BAA-2421°	Mass/2010	SCCmec Type II		
	NARSA NRS705	NY-12	SCCmec Type II		
	NARSA NRS701	MN-082	SCCmec Type II		
	ATCC BAA-1717	TCH1516	SCCmec Type IV		
	NARSA NRS683	GA-298	SCCmec Type IV		
	NARSA NRS662	CO-34	SCCmec Type IV		
	NARSA NRS707	NY-155	SCCmec Type IV		
	ATCC BAA-1707	MW2	SCCmec Type IV		
	NARSA NRS691	GA-62	SCCmec Type IV		
	NARSA NRS648	CA-347	SCCmec Type II or IV		
	NARSA NRS689	GA-442	SCCmec Type IV		
	NARSA NRS668	CO-72	SCCmec Type IV		
	ATCC BAA-1700	HFH-33798	SCCmec Type IV		
	BEI NR-46081 (NARSA NRS484)	HIP12899	SCCmec Type IV		
	ATCC BAA-1691	HFH-30137	SCCmec Type IV		
	ATCC 43300	F182 Kansas	SCCmec Type II		
	ATCC BAA-2422	-	SCCmec Type II		
	ATCC BAA-1720	-	SCCmec Type II		
	NARSA NRS745	CA-629	SCCmec Type IV or V	mecA/C and MREJ	
taphylococcus aureus	ATCC BAA-38	-	j.	(MRSA)	
	NARSA NRS686	-	MREJ Type i	Detected	
	ATCC BAA-44	-			
	ATCC BAA-41	-	MREJ Type ii		
	NARSA NRS385	-			
	ATCC BAA-42	-	1		
	ATCC BAA-39	-	MREJ Type iii		
	ACC BAA-40	-	MREJ Type iv		
	GRE 1062264	-	MREJ Type iv		
-	GRE 0759084	-	MREJ Type v		
-	GRE 1055015	-	MREJ Type vi		
-	GRE 0860042	-	MREJ Type vii		
ļ	GRE 1052034	-	MREJ Type ix		
ļ	GRE 1151100	-	MREJ Type xi		
ļ	GRE 0960006	-	MREJ Type xii		
	GRE 1055017	-	MREJ Type xiii		
	GRE 0759163	-	MREJ Type xiv		
	GRE 1057114	-	MREJ Type xvii		
	ATCC BAA-2313 ^d	-	SCCmec Type XI		
	ATCC BAA-2312 ^d	-	SCCmec Type XI		
	Rennes 1060728 ^e	-	Empty SCCmec cassette		
	GRE 1062519°	_	MREJ Type xix		
taphylococcus aureus			• • • • • • • • • • • • • • • • • • • •	Not Detected	
-	GRE 1062373 ^f	-	MREJ Type xv		
	GRE 1062292 ^f	-	MREJ Type xviii		
	In silico	Reactivity Predictions for	1	Unknown	
	Detected		Not Detected	(no sequence)	
MREJ Type i,iα	MREJ Type vi	MREJ Type xiii	MREJ Type ix ^g	MREJ Type viii	
MREJ Type ii/xvi	MREJ Type vii	MREJ Type xiv	MREJ Type xv	MREJ Type x	
MREJ Type iii	MREJ Type ix ^g	MREJ Type xvi	MREJ Type xviii	MREJ Type xx	
MREJ Type iv	MREJ Type xi	MREJ Type xvii	MREJ Type xix		
MREJ Type v	MREJ Type xii	MREJ Type xxi			

 $^{^{\}rm a}$ Isolates were tested at a concentration near the LoD for ${\it Staphylococcus\ aureus}.$

b NARSA/BEI isolates were sourced by the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) for distribution by BEI Resources, NIAID, NIH.

c Isolate is characterized as methicillin-sensitive Staphylococcus aureus (MSSA) with a non-functional mecA variant that is amplified by the mecA/C assay.

^d Isolate is characterized as methicillin-resistant *Staphylococcus aureus* (MRSA) with the *mecC* gene.

REF

RFIT-ASY-0147

- e Isolate is characterized as MSSA, which matches the mecA/C and MREJ (MRSA) Not Detected result.
- f Isolate is characterized as MRSA, but the MREJ type is not detected by the assay.
- ⁹ A subset of MREJ Type ix sequences (2/8) have mismatches to the assay primer(s) that may have an impact on detection.

Table 119. Results for NDM Isolates Tested and Predicted Reactivity for NDM Types^a

NDM Type	Organism	Source ID	Result
	Acinetobacter baumannii	CDC FDA AR Bank #0033	
NDM-1	Salmonella enterica	CDC FDA AR Bank #0127	
NDW-1	Klebsiella pneumoniae	CDC FDA AR Bank #0068	
	Proteus mirabilis	CDC FDA AR Bank #0159	NDM
NDM-2	Acinetobacter baumannii	GRE 1153064	Detected
NDM-5		CDC FDA AR Bank #0150	
NDM-6	Escherichia coli	CDC FDA AR Bank #0137	
NDM-7		CDC FDA AR Bank #0149	
	In silico Rea	ctivity Predictions	
Detected		Not Detect	ed
NDM-1 – NDM-24 ^{b,c,d}	NDM-32	NDM-1 ^b	NDM-18 ^d
NDM-27 – NDM-29	NDM-40	NDM-4°	

^a Isolates were tested at a concentration near the LoD for NDM.

Table 120. Results for OXA-48-like Isolates Tested and Predicted Reactivity for OXA-48-like Types^a

OXA-48 Like Type		rganism	Source		Result
OXA-48		ella aerogenes	CDC FDA AR	Bank #0074	
OXA-48-like	Serrati	a marcescens	GRE 165	59004	
OXA-162	Klebsiei	la pneumoniae	GRE 135	55030	OXA-48-like Detected
OXA-181	Klebsiei	la pneumoniae	CDC FDA AR	Bank #0051	Detected
OXA-232	Klebsiel	la pneumoniae	CDC FDA AR	Bank #0068	
	In silico Reactivity Predictions				
	Detected			Not Detected ^b	
OXA-48	OXA-244	OXA-515	OXA-54°	OXA-439 ^d	OXA-551 ^d
OXA-48-like	OXA-245	OXA-519	OXA-163 ^d	OXA-517 ^d	OXA-552 ^d
OXA-162	OXA-252	OXA-546	OXA-247 ^d	OXA-535 ^d	OXA-553 ^d
OXA-181	OXA-370	OXA-547	OXA-405 ^d	OXA-538 ^d	OXA-567 ^d
OXA-199	OXA-484	OXA-566	OXA-416°	OXA-548 ^d	OXA-731 ^d
OXA-204	OXA-505		OXA-436 ^d	OXA-549 ^d	
OXA-232	OXA-514		OXA-438 ^d	OXA-550 ^d	

^a Isolates were tested at a concentration near the LoD for OXA-48-like.

Table 121. Results for vanA/B in Vancomycin-resistant Enterococcus faecium and Enterococcus faecalis Isolates Testeda

van Gene	Organism	Source ID	Strain/Location/Year	Result
		ATCC 700221	-	
	Enterococcus faecium	JMI 475	IN/2003	
		ATCC BAA-2318	-	
vanA		ATCC BAA-2573	bMx 0502240	vanA/B
	Enterococcus faecalis	JMI 12536	MA/2002	Detected
		ATCC 700802	V583	
vanB	Enterococcus faecalis	ATCC 51299	NJ-3	
	Enterococcus faecium	ATCC 51858	Vancomycin- dependent #4	

^a Isolates were tested at a concentration near the LoD for *Enterococcus faecium* and *Enterococcus faecalis*.

Table 122. Results for VIM Isolates Tested and Predicted Reactivity for VIM Types^a

VIM Type	Organism	Source ID	Result
VIM-1	Enterobacter cloacae	CDC FDA AR Bank #0154	

^b A subset of NDM-1 sequences (5/753) have mismatches to assay primer(s) that may have an impact on detection.

^c A subset of NDM-4 sequences (1/57) have mismatches to assay primer(s) that may have an impact on detection.

^d A subset of NDM-18 sequences (1/3) have mismatches to assay primer(s) that may have an impact on detection.

^b Non-OXA-48-like types (e.g. OXA-23-like, OXA-40/24-like, OXA-51-like, and OXA-58-like, OXA-143a-like, and OXA-143-like) will not be detected.

[°]OXA-48-like progenitor found in *Shewanella* species. The OXAa assay was designed to exclude these types.

^d OXA-48-like types with altered carbapenem hydrolysis activity. The OXAa assay was designed to exclude these variants.

RFIT-ASY-0147

VIM-40 – VIM-44		VIM-45	VIM-67	
VIM-23 – VIM-38	VIM-66	VIM-39	VIM-65	VIM-22
VIM-1 – VIM-20 ^b	VIM-47 – VIM-64	VIM-2 ^b	VIM-46	VIM-21
De	tected	Not E	Detected	Unknown (no sequences)
	In	silico Reactivity Prediction	ns	
VIM-27	Klebsiella pneumoniae	CDC FDA AR Bank #0040		
VIM-11	Pseudomonas aeruginosa	CDC FDA AR Bank #0239		
VIM-10	Pseudomonas aeruginosa	NCT	C 13437	
VIM-7	Escherichia coli	GRE	1256018	Detected
VIM-4	Pseudomonas aeruginosa	CDC FDA A	R-BANK #0054	VIM
VIM-2	Pseudomonas aeruginosa	CDC FDA A	AR Bank #0100	
	Enterobacter cloacae	CDC FDA A	AR Bank #0501	
	Klebsiella pneumoniae	CDC FDA A	AR Bank #0076	

^a Isolates were tested at a concentration near the LoD for VIM.

Table 123. Results for Candida albicans Isolates Tested

Organism	Source ID	Strain	Result		
Candida albicans	ATCC 11006	-			
	ATCC 14053	NIH 3172			
	ATCC 22972	M 97	Candida albicans		
	ATCC 10231	DSM 1386	Detected		
	ATCC 90028	NCCLS 11			
	ATCC MYA-2876	SC5314			

Note: The assay for detection of C. albicans amplifies a gene within the mitochondrial genome and 'petite' strains that have lost mitochondrial DNA will not be detected.

Table 124. Results for Candida auris Isolates Testeda

Organism	Source ID	Strain/Location/Year	Result
	CDC FDA AR Bank #0381	-	
	CDC FDA AR Bank #0383	-	
	CDC FDA AR Bank #0384	-	
	CDC FDA AR Bank #0385	-	Candida auris
Candida auris	CDC FDA AR Bank #0388	-	Detected
	NCPF 8971	Strain 10 (non-aggregative) United Kingdom/2016	
	NCPF 8977	Strain 2 (aggregative) United Kingdom/2016	

^a A subset of *Candida auris* sequences (2/151) has mismatches to assay primer(s) that may have an impact on detection.

Table 125. Results for Candida glabrata Isolates Tested

Organism	Source ID	Strain/Year	Result
	ATCC 2001	Type strain	
	ATCC 15545	-	
On which what water	ATCC 15126	Mutant TMAGR-23	Candida glabrata Detected
Candida glabrata	ATCC 32554	26247-1	Detected
	ATCC MYA-2950	303542	
	Clinical Isolate ^a	2018	Not Detected

^a Isolate characterized as 'petite mutant' with loss of mitochondrial function/mitochondrial DNA.

Note: The assay for detection of C. glabrata amplifies a gene within the mitochondrial genome and 'petite' strains that have lost mitochondrial DNA will not be detected.

Table 126. Results for Candida krusei Isolates Tested

Organism	Source ID	Strain	Result	
	ATCC 6258	Type strain		
	ATCC 14243	-		
Candida krusei	ATCC 28870	CBS 2052	Candida krusei	
Candida krusei	ATCC 34135	ST-112	Detected	
	ATCC 90878	B74		
	ATCC 201748	89-08-008		

^b A subset of VIM-2 sequences (3/182) have mismatches to assay primer(s) that may have an impact on detection.

REF

RFIT-ASY-0147

Table 127. Results for Candida parapsilosis Isolates Tested

Organism	Source ID	Strain	Result	
	ATCC 34136	ST-89		
	ATCC 22019	Type strain		
Candida parapsilosis	ATCC 28475	CBS 2915	Candida parapsilosis Detected	
	ATCC 90875	B78		
	ATCC 96138	MC0433		

Note: The assay for detection of C. parapsilosis amplifies a gene within the mitochondrial genome and 'petite' strains that have lost mitochondrial DNA will not be detected.

Table 128. Results for Candida tropicalis Isolates Tested

Organism	Source ID	Strain/Location	Result		
	ATCC 750	Type strain			
	ATCC 66029	AmMS 227			
Candida tropicalis	ATCC 90874	B79 Germany	Candida tropicalis Detected		
	ATCC 201380	API 90 01 105			
	ATCC MYA-2734	509-12.1			

Note: The assay for detection of C. tropicalis amplifies a gene within the mitochondrial genome and 'petite' strains that have lost mitochondrial DNA will not be detected.

Table 129. Results for Cryptococcus neoformans/gattii Isolates Tested

Organism	Serotype/Genotype ^a	Source ID	Strain	Result
	-	ATCC MYA-4071	WM 276	
	B/VGIIb	ATCC MYA-4094	R272	
0	B/VGI	ATCC MYA-4560	WM179	
Cryptococcus gattii	B/VGIII	ATCC MYA-4562	WM161	
	C/VGIV	ATCC MYA-4563	WM779	
	VGIIc	ATCC MYA-4877	A6MR38	Cryptococcus
	-	ATCC 24067	52	neoformans/gattii
	-	ATCC 32045	Type strain	Detected
	A/VNII	ATCC MYA-4564	WM148	
Cryptococcus neoformans	AD/VNIII	ATCC MYA-4566	WM628	
	D/VNIV	ATCC MYA-4567	WM629	
	В	ATCC 24065	112	
	Α	ATCC 208821b	Type strain	

^a Assay reactivity is not serotype/genotype-dependent, the assay will react with all serotypes and genotypes.

Analytical Specificity (Cross-Reactivity and Exclusivity)

The potential for non-specific amplification and detection by the BIOFIRE BCID2 Panel assays was evaluated by *in silico* analysis of available sequences and by testing of high concentrations of on-panel and off-panel organisms. Each organism was tested in triplicate with most bacteria tested at a concentration >1.0E+09 CFU/mL and most yeast tested at a concentration >1.0E+08 CFU/mL. Off-panel fungi, viruses, and parasites were tested at the highest cultured concentration possible.

The on-panel organisms tested to assess the potential for intra-panel cross-reactivity are listed in Table 130, with each observed or predicted cross-reactivity indicated. The off-panel organisms tested are listed in Table 131 and the list includes species genetically related to organisms or AMR genes detected by the panel (same genus or otherwise related) as well as unrelated organisms that may be found in blood and/or blood cultures as pathogens or contaminants (e.g. skin microorganisms, viruses, etc.). Off-panel AMR genes were also evaluated, and all observed or predicted cross-reactivities are indicated. Erroneous results due to cross-reactivity with organisms that were not evaluated or due to cross-reactivity with emerging or novel sequences are also possible.

Table 130. On-Panel Organisms and AMR Genes Tested for Evaluation of BIOFIRE BCID2 Panel Analytical Specificity

A risk of cross-reactivity was confirmed for the species in bold.

^b Described as *Cryptococcus neoformans* var. *grubii*.

REF

	ON-PAN	El		
	Gram Positive			
Enterococcus faecalis	Staphylococcus intermedius	Staphylococcus xylosus	Streptococcus mitis	
Enterococcus faecium	Staphylococcus lentus	Streptococcus agalactiae	Streptococcus mutans	
Listeria monocytogenes	Staphylococcus lugdunensis	Streptococcus anginosus	Streptococcus oralis	
Staphylococcus argenteus ^a	Staphylococcus lutrae	Streptococcus australis	Streptococcus parasanguinis	
Staphylococcus aureus (MRSA)	Staphylococcus nepalensis	Streptococcus bovis	Streptococcus pneumoniae	
Staphylococcus auricularis	Staphylococcus pasteuri	Streptococcus canis	Streptococcus pseudopneumoniae	
Staphylococcus capitis	Staphylococcus pettenkoferi	Streptococcus constellatus	Streptococcus pyogenes	
Staphylococcus caprae	Staphylococcus pseudintermedius	Streptococcus cristatus	Streptococcus salivarius	
Staphylococcus carnosus	Staphylococcus saprophyticus	Streptococcus dysgalactiae	Streptococcus sanguinis	
Staphylococcus cohnii	Staphylococcus schleiferi	Streptococcus equi	Streptococcus sobrinus	
Staphylococcus epidermidis (MRSE)	Staphylococcus schweitzeri ^a	Streptococcus equinus	Streptococcus suis	
Staphylococcus equorum	Staphylococcus sciuri	Streptococcus gallolyticus	Streptococcus vestibularis	
Staphylococcus haemolyticus	Staphylococcus simulans	Streptococcus garioryticus Streptococcus gordonii	Streptococcus vestibularis	
Staphylococcus hominis	Staphylococcus warneri	Streptococcus intermedius	4	
Staphylococcus Horninis	Gram Negative			
Acinetobacter baumannii	Enterobacter mori	Metakosakonia massiliensis	Salmonella typhimurium	
Acinetobacter badimanini Acinetobacter calcoaceticus	Enterobacter mon	Mixta calida	Serratia entomophila	
Acinetobacter carcoaceticus Acinetobacter nosocomialis ^b	Erwinia billingiae	Mixta gaviniae	Serratia entornophila Serratia ficaria	
Acinetobacter nosoconnais Acinetobacter pittii	Escherichia albertiie	Morganella morganii	Serratia licana Serratia fonticola	
•	Escherichia coli	Neisseria meningitidis		
Acinetobacter seifertii		ŭ	Serratia liquefaciens	
Bacteroides fragilis	Escherichia fergusoniif	Pantoea agglomerans	Serratia marcescens	
Cedecea davisae	Escherichia hermannii	Pantoea septica	Serratia odorifera	
Citrobacter braakii	Haemophilus influenzae	Photorhabdus asymbiotica	Serratia plymuthica	
Citrobacter freundii	Hafnia alvei	Plesiomonas shigelloides ^h	Serratia rubidaea	
Citrobacter koseri	Hafnia paralvei	Pluralibacter gergoviae	Shigella boydiif	
Cosenzaea myxofaciens ^c	Klebsiella aerogenes	Proteus hauseri	Shigella dysenteriae ^f	
Cronobacter malonaticus	Klebsiella grimontii	Proteus mirabilis	Shigella flexnerif	
Cronobacter sakazakii	Klebsiella michiganensis	Proteus penneri	Shigella sonnei	
Cronobacter turicensis	Klebsiella oxytoca	Proteus vulgaris	Shimwellia blattae	
Edwardsiella tarda	Klebsiella pneumoniae	Providencia stuartii	Stenotrophomonas maltophilia	
Enterobacter asburiae	Klebsiella quasipneumoniae	Pseudescherichia vulneris	Tatumella ptyseos	
Enterobacter bugandensis ^d	Klebsiella variicola	Pseudomonas aeruginosa	Trabulsiella guamensisi	
Enterobacter cancerogenus	Kluyvera ascorbata	Rahnella aquatilis	Yersinia enterocolitica	
Enterobacter cloacae	Kluyvera intermedia	Raoultella ornithinolytica	Yersinia frederiksenii	
Enterobacter hormaechei	Kosakonia cowanii	Raoultella planticola	Yersinia pestis	
Enterobacter hormaechei				
subsp. xiangfangensis	Leclercia adecarboxylata	Raoultella terrigena	Yersinia psuedotuberculosis	
(aka Enterobacter xiangfangensis)				
Enterobacter kobei	Lelliottia amnigena	Salmonella bongori	Yokenella regensburgei	
Enterobacter ludwigii	Lelliottia nimipressuralis	Salmonella enterica		
0 "1 ":	Yeast			
Candida albicans	Candida glabrata	Candida parapsilosis j	Cryptococcus gattii	
Candida auris	Candida krusei	Candida tropicalis k	Cryptococcus neoformans	
	Antimicrobial Resis			
CTX-M	mcr-1	NDM	VIM	
IMP	mecA/C	OXA-48-like		
KPC	mecA/C and MREJ (MRSA)	vanA/B		

^a Detected as Staphylococcus aureus (mecA/C and MREJ (MRSA) also detected for S. argenteus); members of the Staphylococcus aureus complex.

Table 131. Off-Panel Organisms and AMR Genes Tested for Evaluation of BIOFIRE BCID2 Panel Analytical Specificity

A risk of cross-reactivity was confirmed for the species in bold.

At their of order reactivity was continuined for the openies in bold:										
OFF-PANEL										
Gram Positive Bacteria										
Acintomyces naeslundii	Corynebacterium jeikeium	Enterococcus raffinosus	Micrococcus luteus							
Actinomyces israelii	Corynebacterium striatum	Gemella morbillorum	Mycoplasma hominis							

^b Risk of amplification by KPC assay predicted by sequence analysis; not observed when tested at 8.7E+09 CFU/mL.

[°] Detected as *Proteus* spp. at ≥8.8E+06 CFU/mL. Nonpathogenic bacterium isolated from gypsy moths; formerly classified as *Proteus*.

^d Detected as *Enterobacter cloacae* complex; newly described species.

^e Detected as *Escherichia coli* at ≥8.0E+08 CFU/mL.

^f Detected as *Escherichia coli*.

⁹ Detected as *Klebsiella oxytoca*; *Klebsiella grimontii* was formerly classified as *K. oxytoca* phylogroup Ko6.

h Risk of amplification by Salmonella assay predicted by sequence analysis; not observed when tested at 7.4E+09 CFU/mL.

ⁱ Detected as *Enterobacter cloacae* complex at ≥9.0E+07 CFU/mL.

j Detected as Candida tropicalis at ≥2.8E+07 CFU/mL.

^k Detected as *Candida parapsilosis* at ≥6.3E+07 CFU/mL.

Actinomyces odontolyticus Aerococcus viridansa Arcanobacterium haemolyticum Bacillus cereus Bacillus licheniformis Bacillus subtilis Clostridioides difficile Clostridium perfringens Clostridium tetani Corynebacterium diptheria Acinetobacter baylyi	Corynebacterium urealyticum Cutibacterium acnes Enterococcus avium Enterococcus casseliflavus Enterococcus cecoruma Enterococcus dispar Enterococcus durans	PANEL Granulicatella adiacensa Kocuria kristinae Lactobacillus acidophilus Lactoccus lactis	Mycoplasma pneumoniae Nocardia farcinica Peptostreptococcus anaerobiu
Aerococcus viridansa Arcanobacterium haemolyticum Bacillus cereus Bacillus licheniformis Bacillus subtilis Clostridioides difficile Clostridium perfringens Clostridium tetani Corynebacterium diptheria	Cutibacterium acnes Enterococcus avium Enterococcus casseliflavus Enterococcus cecoruma Enterococcus dispar	Kocuria kristinae Lactobacillus acidophilus Lactococcus lactis	Nocardia farcinica Peptostreptococcus anaerobiu
Bacillus cereus Bacillus licheniformis Bacillus subtilis Clostridioides difficile Clostridium perfringens Clostridium tetani Corynebacterium diptheria	Enterococcus casseliflavus Enterococcus cecorum ^a Enterococcus dispar	Lactococcus lactis	<u> </u>
Bacillus licheniformis Bacillus subtilis Clostridioides difficile Clostridium perfringens Clostridium tetani Corynebacterium diptheria	Enterococcus cecorum ^a Enterococcus dispar		51
Bacillus subtilis Clostridioides difficile Clostridium perfringens Clostridium tetani Corynebacterium diptheria	Enterococcus dispar	1 !=4=u! :!	Rhodococcus equi
Clostridioides difficile Clostridium perfringens Clostridium tetani Corynebacterium diptheria		Listeria grayi	Rothia mucilaginosa
Clostridium perfringens Clostridium tetani Corynebacterium diptheria	Enterococcus durans	Listeria innocua	Sarcina ventriculi
Clostridium tetani Corynebacterium diptheria	Lillerococcus duraris	Listeria ivanovii	Solibacillus silvestris
Corynebacterium diptheria	Enterococcus gallinarum	Listeria seeligeri	Ureaplasma parvum
	Enterococcus hirae	Listeria welsimeri	Ureaplasma urealyticum
Acinetobacter baylyi	Enterococcus mundtii	Macrococcus caseolyticus	Vagococcus fluvialis
Acinetobacter baylyi		tive Bacteria	
	Bacteroides uniformis	Kingella kingae	Pseudomonas fluorescens
Acinetobacter bereziniae	Bacteroides vulgatus	Kingella negevensis	Pseudomonas luteola
Acinetobacter guillouiae	Bordetella bronchiseptica	Kingella oralis	Pseudomonas nitroreducens
Acinetobacter haemolyticus	Bordetella parapertussis	Legionella pneumophila	Pseudomonas oleovorans
Acinetobacter johnsonii	Bordetella pertussis	Leptospira interrogans	Pseudomonas oryzihabitans
Acinetobacter junii	Burkholderia cepacia	Moraxella catarrhalis	Pseudomonas pertucinogena
Acinetobacter lwoffii	Burkholderia mallei	Moraxella osloensise	Pseudomonas putida
Acinetobacter parvus	Burkholderia multivorans	Mycobacterium tuberculosis	Pseudomonas stutzeri
Acinetobacter radioresistens	Burkholderia pseudomallei	Neisseria gonorrhoeae	Pseudomonas veronii
Acinetobacter schindlerib	Campylobacter hominis	Neisseria lactamica	Psychrobacter cryohalolentis
A : () () ()	011 " 1 1 "	Neisseria meningitidis	
Acinetobacter soli	Chlamydia trachomatis	(unencapsulated)	Psychrobacter immobilis
Acinetobacter ursingii	Chlamydophila pneumoniae	Neisseria mucosa	Ralstonia mannitolilytica
Acintobacillus ureae	Chromobacterium violaceum	Neisseria sicca	Ralstonia pickettii
Aggregatibacter			
actinomycetemcomitans	Eikenella corrodens	Parabacteroides distasonis	Stenotrophomonas acidiminiph Stenotrophomonas
Actinobacillus hominis	Haemophilus aegyptius ^d	Pasteurella aerogenes	nitritireducens .
Aeromonas caviae	Haemophilus ducreyi	Pasteurella canis	Stenotrophomonas rhizophila
Aeromonas hydrophila	Haemophilus haemolyticus	Pasteurella multocida	Treponema pallidum
Aeromonas sobria	Haemophilus parahaemolyticus	Pasteurella stomatis	Veillonella parvula
Aggregatibacter aphrophilus	Haemophilus parainfluenzae	Prevotella melaninogenica	Vibrio alginolyticus
Bacteriodes xylanisolvens ^c	Haemophilus parasuis	Prevotella oralis	Vibrio parahaemolyticus
Bacteroides caccae	Haemophilus quentini	Pseudomonas alcaligenes	Vibrio vulnificus
Bacteroides ovatus ^c	Haemophilus sputorum	Pseudomonas citronellolis	
Bacteroides thetaiotaomicron	Kingella denitrificans	Pseudomonas mendocina	
		east	Milla va muna a fa via a a a
Aspergillus flavus	Candida kefyr (Kluyveromyces marxianus)	Coccidioides posadasii	Millerozyma farinosa (Candida cacaoi)
Aspergillus fumigatus ^f	Candida lusitaniae (Clavispora lusitaniae)	Cryptococcus amylolentus	Naganishia albida (Cryptococcus albidus)
A a ma maille a mina m	·	Constant and a service and another date of	Papiliotrema laurentii
Aspergillus niger	Candida metapsilosis	Cryptococcus uniguttulatus	(Cryptococcus laurentii)
Aspergillus terreus	Candida multis-gemmis	Cutaneotrichosporon curvatum (Cryptococcus curvatus)	Penicillium chrysogenum
Blastomyces dermatitidis	Candida nivariensis	Cyberlindnera fabianii	Rhodotorula mucilaginosa
	Candida norvegensis	(Candida fabianii)	+
Candida dubliniensis	(Pichia norvegensis) ^h	Histoplasma capsulatum	Saccharomyces cerevisiae
Candida famata (Debaryomyces hansenii) ^g	Candida orthopsilosis	Kluyveromyces lactis	Schizosaccharomyces pomb
Candida guilliermondii	Candida	Vadamas birasii	Toloromi in a manufici
(Meyerozyma guilliermondii,	Candida sojae	Kodameae ohmeri	Talaromyces marneffei
Pichia guilliermondii)	0 "1 ' ""		T.,
Candida haemulonii	Candida viswanthii	Lodderomyces elongisporus	Trichosporon asahii
Candida inconspicua (Pichia cactophila) ^h	Coccidioides immitis	Magnusiomyces capitatus	Wickerhamomyces anomalu
(. ioing sacropina)	Vir	uses	
Chikungunya Virus	Hepatitis B virus	Human Herpes Virus-7	Varicella Zoster Virus
Cytomegalovirus	Hepatitis C virus	Measles Virus	West Nile Virus
Dengue Virus	Human Immunodeficiency Virus	Mumps Virus	Zika Virus
Enterovirus	Herpes Simplex Virus Type 1	Parvovirus B19	Zina viius
Epstein Barr Virus	Herpes Simplex Virus Type 1 Herpes Simplex Virus Type 2	Polyoma Virus	
		Rubella Virus	
Hepatitis A virus	Human Herpes Virus-6	asites	

RFIT-ASY-0147

	OFF-PANEL									
Antimicrobial Resistance Genes										
AmpC	mcr-3 SHV vanC									
<i>bla_{RAHN}</i> ^k	mcr-4	SME	vanD							
CMY	ompK36	SPM	vanM ^l							
mcr-2	OXA-24/65	TEM								

^a Risk of amplification by the Staphylococcus assay predicted by sequence analysis; not detected when tested at 3.0E+08 cells/mL (*G. adiacens*) or >6.0E+09 CFU/mL (*A. viridans* and *E. cecorum*). Similar risk predicted for *Aerococcus christensenii* and *Aerococcus sanguinicola*; not tested.

I Not tested; predicted to be detected as vanA/B if an applicable bacterium is also detected.

^b Risk of amplification by the CTX-M assay at ≥8.1E+09 CFU/mL; will not be detected unless an applicable bacterium is also detected.

[°] Detected as Bacteroides fragilis at ≥8.2E+06 cells/mL. Similar risk predicted for Bacteroides ovatus.

^d Detected as *Haemophilus influenzae*; also described as *Haemophilus influenzae* biogroup *aegyptius*.

e Risk of amplification by KPC assay predicted by sequence analysis; not observed when tested at 7.8E+09 CFU/mL.

f Risk of amplification by the Bfragilis assay predicted by sequence analysis; not observed when tested at 5.0E+08 CFU/mL. Similar risk predicted for Aspergillus lentulus and Aspergillus viridinutans; not tested.

⁹ Risk of amplification by the Ckrusei assay predicted by sequence analysis; not observed when tested at 8.9E+08 CFU/mL. Similar risk predicted for other yeast species; not tested.

h Detected as Candida krusei at ≥3.7E+05 CFU/mL. Similar risk predicted for Pichia pseudocactophila and Pichia cactophila; not tested.

Detected as Candida glabrata at ≥8.0E+06 CFU/mL. Candida glabrata complex species; similar risk predicted for Candida bracarensis; not tested.

Detected as Cryptococcus neoformans/gattii; nonpathogenic fungus isolated from the frass of beetles.

^k Risk of amplification by the CTX-M assay predicted by sequence analysis; not observed when *Rahnella aquatilis* was tested at 7.8E+09 CFU/mL. Similar risk predicted for *ampC* in *Leminorella* species, *bla*_{OXY}, and *bla*_{KLUC}; not tested.

RFIT-ASY-0147

Reproducibility

A multi-center study was performed to evaluate the reproducibility of analyte detection on the BIOFIRE 2.0 and BIOFIRE Torch systems. The study incorporated potential variation introduced by site (three), day (five), operator (at least two per site), system/module, and reagent kit lot (three). The contrived samples contained representative isolates of aerobic and anaerobic gram-positive and gram-negative bacteria, AMR genes, and yeast in simulated blood culture matrix. Each organism was present in a sample at a concentration consistent with what is observed in a positive blood culture (at positive bottle indication or up to 24 hours after positive bottle indication). Negative results were obtained from samples that were not spiked with the organism or AMR gene.

Each of the three sites tested 20 replicates per sample and system for a total of 120 valid runs per sample and 720 valid runs overall. A summary of the reproducibility of results (percent (%) agreement with the expected Detected, Not Detected or N/A result) for each analyte (by site and system) is provided in Table 132.

Table 132. Reproducibility of the BIOFIRE BCID2 Panel Results on BIOFIRE 2.0 and BIOFIRE Torch Systems

				Agreement with Expected Result							
Analyte				BIOFIRE 2.0 BIOFIRE Torch						All Sites/Systems	
(Type/Species) Source ID	Concentration Tested	Expected Result	Site A	Site B	Site C	System Total	Site A	Site B	Site C	System Total	[95% Confidence Interval]
	1			·	Gram Positive	Bacteria					400/400
Enterococcus faecalis	7.65E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
ATCC 51299	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Enterococcus faecium	9.19E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
ATCC 27270	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Listeria monocytogenes	Negative (no analyte)	Not Detected	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	720/720 100% [99.5%-100%]
Staphylococcus spp.	Multiple ^a	Detected	59/60 (98.3%)	60/60 (100%)	60/60 (100%)	179/180 (99.4%)	60/60 (100%)	60/60 (100%)	60/60 (100%)	180/180 (100%)	359/360 99.7% [98.5%-99.9%]
ошрнуюсоссиз эрр.	Negative (no analyte)	Not Detected	60/60 (100%)	60/60 (100%)	60/60 (100%)	180/180 (100%)	60/60 (100%)	60/60 (100%)	60/60 (100%)	180/180 (100%)	360/360 100% [99.0%-100%]
Staphylococcus aureus	2.44E+08 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-99.9%]
ATCC BAA-38	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Staphylococcus epidermidis	2.31E+06 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	19/20 (95.0%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-99.9%]

Page 105 of 121

						Agre	eement with F	xpected Resu	lf			
Analyte				BIOFIRE 2.0					BIOFIRE Torch			
(Type/Species) Source ID	Concentration Tested	Expected Result	Site A	Site B	Site C	System Total	Site A	Site B	Site C	System Total	All Sites/Systems [95% Confidence Interval]	
ATCC 12228	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]	
Staphylococcus lugdunensis	1.67E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]	
ATCC 43809	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]	
Strantagoggaan	Multiple ^b	Detected	40/40 (100%)	40/40 (100%)	40/40 (100%)	120/120 (100%)	40/40 (100%)	40/40 (100%)	40/40 (100%)	120/120 (100%)	240/240 100% [98.4%-100%]	
Streptococcus spp.	Negative (no analyte)	Not Detected	80/80 (100%)	80/80 (100%)	80/80 (100%)	240/240 (100%)	80/80 (100%)	80/80 (100%)	80/80 (100%)	240/240 (100%)	480/480 100% [99.2%-100%]	
Streptococcus agalactiae	Negative (no analyte)	Not Detected	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	720/720 100% [99.5%-100%]	
Streptococcus pneumoniae	5.91E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]	
ATCC 6303	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]	
Streptococcus pyogenes	2.63E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]	
ATCC 49399	None (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]	
					Gram Negative	Bacteria						
Acinetobacter calcoaceticus- baumannii complex	7.36E+07 CFU/mL	Detected	19/20 (95.0%)	19/20 (95.0%)	20/20 (100%)	58/60 (96.7%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	118/120 98.3% [94.1%-99.8%]	
(Acinetobacter baumannii) AR Bank 0033	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]	
Bacteroides fragilis	8.62E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [99.4%-100%]	
ATCC 25285	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]	
Enterobacterales	Multiple ^c	Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]	

						Agre	eement with E	xpected Resul	lt		
Analyte				BIOFII	RE 2.0			BIOFIRE			All Sites/Systems
(Type/Species) Source ID	Concentration Tested	Expected Result	Site A	Site B	Site C	System Total	Site A	Site B	Site C	System Total	[95% Confidence Interval]
	Negative (no analyte)	Not Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
Enterobacter cloacae complex	Negative (no analyte)	Not Detected	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	720/720 100% [99.5%-100%]
Escherichia coli	8.79E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	19/20 (95.0%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-%99.9%]
CDC-FDA AR Bank #0350	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Klebsiella aerogenes	9.29E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
CDC-FDA AR Bank #0161	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Klebsiella oxytoca	2.44E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
CDC-FDA AR Bank #0147	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Klebsiella pneumoniae group	Negative (no analyte)	Not Detected	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	720/720 100% [99.5%-100%]
Proteus spp.	1.68E+09 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
(Proteus mirabilis) GRE 1254053	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Salmonella spp.	1.74E+09 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
(Salmonella enterica) ATCC 700720	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Serratia marcescens	3.05E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
GRE 1659004	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]

			Agreement with Expected Result								
Analyte			BIOFIRE 2.0				BIOFIRE Torch				All Sites/Systems
(Type/Species) Source ID	Concentration Tested	Expected Result	Site A	Site B	Site C	System Total	Site A	Site B	Site C	System Total	[95% Confidence Interval]
Haemophilus influenzae ATCC 10211	1.32E+08 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [99.4%-99.9%]
	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Neisseria meningitidis	Negative (no analyte)	Not Detected	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	720/720 100% [99.5%-100%]
Pseudomonas aeruginosa	7.22E+07 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-99.9%]
CDC-FDA AR Bank #0054	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Stenotrophomonas maltophilia	1.13E+09 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
ATCC 700475	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
				Antir	nicrobial Resi	stance Gene	S				
CTX-M (CTX-M-22) (<i>Proteus mirabilis</i>) GRE 1254053	1.68E+09 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-%99.9%]
	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
IMP (IMP-4) (<i>Klebsiella aerogenes</i>) CDC-FDA AR Bank #0161	9.29E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
KPC-3 (Klebsiella oxytoca) ATCC 10211	2.44E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
mcr-1 (Escherichia coli) CDC-FDA AR Bank #0350	8.79E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	19/20 ^d (95.0%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4%-99.9%]
	Negative (no analyte)	Not Detected or N/A	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]

RFIT-ASY-0147

						Agr	eement with E	xpected Resu	lt		
Analyte				BIOFI	RE 2.0			BIOFIRE			All Sites/Systems
(Type/Species) Source ID	Concentration Tested	Expected Result	Site A	Site B	Site C	System Total	Site A	Site B	Site C	System Total	[95% Confidence Interval]
mecA/C	Negative (no analyte)	Not Detected or N/A	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	720/720 100% [99.5%-100%]
mecA/C and MREJ (MRSA) (Staphylococcus	2.44E+08 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-99.9%]
aureus) ATCC BAA-38	Negative (no analyte)	N/A	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
NDM (NDM-1) (Acinetobacter	7.36E+07 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-99.9%]
baumannii) CDC-FDA AR Bank #0033	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
OXA-48-like (OXA-48)	3.05E+07 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4-99.9%]
(Serratia marcescens) GRE 1659004	Negative (no analyte)	Not Detected or N/A	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
vanA/B (vanB)	7.65E+08 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
(Enterococcus faecalis) ATCC 51299	Negative (no analyte)	N/A	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
VIM (VIM-4) (Pseudomonas	7.22E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [97.0%-100%]
aeruginosa) CDC-FDA AR Bank #0054	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
				ı	Yeas	t		1	ı		
Candida albicans	1.76E+05 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	19/20 (95.0%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4%-99.9%]
ATCC 90028	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Candida auris	3.49E+07 CFU/mL	Detected	19/20 (95.0%)	20/20 (100%)	20/20 (100%)	59/60 (98.3%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	119/120 99.2% [95.4%-99.9%]
CDC-FDA AR Bank #0381	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]

RFIT-ASY-0147

				Agreement with Expected Result							
Analyte				BIOFI	RE 2.0			BIOFIRE	Torch		All Sites/Systems
(Type/Species) Source ID	Concentration Tested	Expected Result	Site A	Site B	Site C	System Total	Site A	Site B	Site C	System Total	[95% Confidence Interval]
Candida glabrata	3.82E+07 CFU/mL	Detected	20/20 (100%)	18/20 (90.0%)	20/20 (100%)	58/60 (96.7%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	118/120 98.3% [94.1%-99.8%]
ATCC 15545	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Candida krusei	2.48E+05 CFU/mL	Detected	18/20 (90.0%)	20/20 (100%)	20/20 (100%)	58/60 (96.7%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	118/120 98.3% [94.1%-99.8%]
ATCC 6258	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Candida parapsilosis	2.91E+05 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [99.4%-100%]
ATCC 34136	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Candida tropicalis	Negative (no analyte)	Not Detected	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	120/120 (100%)	120/120 (100%)	120/120 (100%)	360/360 (100%)	720/720 100% [99.5%-100%]
Cryptococcus neoformans/gattii (Cryptococcus neoformans) ATCC MYA-4564	1.20E+07 CFU/mL	Detected	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	20/20 (100%)	20/20 (100%)	20/20 (100%)	60/60 (100%)	120/120 100% [99.4%-100%]
	Negative (no analyte)	Not Detected	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	100/100 (100%)	100/100 (100%)	100/100 (100%)	300/300 (100%)	600/600 100% [99.4%-100%]
Overall Agreement with the Expected Results (All Analytes/All Test Concentrations) [95% Confidence Interval]		5148/5160 99.8% [99.6%- 99.9%]	5157/5160 99.9% [99.8%- 99.9%]	5157/5160 99.9% [99.8%- 99.9%]	15461/ 15480 99.9% [99.8%- 99.9%]	5160/5160 100% [99.9%- 100%]	5160/5160 100% [99.9%- 100%]	5160/5160 100% [99.9%- 100%]	15480/ 15480 100% [99.9%- 100%]	30941/30960 99.94% [99.90%-99.96%]	

^a Staphylococcus spp. data are from samples containing Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus lugdunensis at the concentrations listed in their respective sections.

^b Streptococcus spp. data are from samples containing Streptococcus pneumoniae and Streptococcus pyogenes at the concentrations listed in their respective sections.

^c Enterobacterales data are from samples containing Escherichia coli, Klebsiella aerogenes, Klebsiella oxytoca, Proteus mirabilis, Salmonella enterica, and Serratia marcescens at the concentrations listed in their respective sections.

^d One replicate of the mcr-1 test result was reported as N/A. For this replicate, the MCR-1 assay was positive, but an applicable bacterium was not detected.

RFIT-ASY-0147

Interference

Potentially interfering substances that could be present in blood culture specimens were evaluated for their effect on BIOFIRE BCID2 Panel performance. The substances tested included endogenous blood components (e.g. albumin, gamma-globulin, human genomic DNA), exogenous substances (e.g. prescribed or over-the-counter medications, blood anticoagulants, substances used to decontaminate or disinfect work areas, etc.), potentially competing commensal or infectious microorganisms, and various bottle/culture media.

Each substance was added to contrived samples containing representative panel organisms at concentrations near LoD (at least 10-fold lower than organism concentrations in a positive blood culture). The concentration of the substances or competing microorganisms added to the samples was equal to or greater than the highest level expected be in a blood culture.

Valid and accurate results were obtained for each sample containing endogenous and exogenous substances as well as various anticoagulants and disinfectants at the concentrations indicated in Table 133 (no interference).

Table 133. Endogenous Substances, Exogenous Substances, Anticoagulants, and Disinfectants Tested - No Interference Observed

Table 133. Endogenous Subst		ticoagulants, and Disinfectants Test	ea - No interrerence Observea		
Substance Tested	Reference Range in Whole Blood ^a	Concentration Expected in Positive Blood Culture ^b	Test Concentration		
	Endogenous	Substances			
Albumin	35 – 52 mg/mL	7.0 – 10.4 mg/mL	15 mg/mL ^c		
Bilirubin (unconjugated)	0.0 - 0.2 mg/mL	0.00 - 0.04 mg/mL	0.40 mg/mL		
Cholesterol	<2.0 mg/mL	<0.4 mg/mL	4.0 mg/mL		
Fibrinogen	1.6 – 4.3 mg/mL ^d	0.32 - 0.86 mg/mL	4.3 mg/mL		
Gamma-globulin	7 – 16 mg/mL ^e	1.4 – 3.2 mg/mL	20 mg/mL		
D-Glucose	0.74 – 1.00 mg/mL	0.15 - 0.20 mg/mL	10 mg/mL		
Hemoglobin	<0.03 mg/mL	<0.006 mg/mL	10 mg/mL		
Magnesium (MgSO ₄)	0.017 - 0.024 mg/mL	0.0034 - 0.0048 mg/mL	0.1 mg/mL		
Triglycerides	<1.50 mg/mL	<0.30 mg/mL	15 mg/mL		
Human Genomic DNA (e.g. nucleic acids from white blood cells)	4.0E+06 – 1.0E+07 cells/mL	8.0E+05 – 2.0E+06 cells/mL	0.07 mg/mL (1.0E+07 cells/mL) ^f		
	Exogenous	Substances			
	Over-the-Counter Medic	ations and Supplements			
Acetaminophen	0.052 mg/mL	0.0104 mg/mL	0.156 mg/mL		
Salicylic Acid	9.52 μg/mL	1.90 μg/mL	28.6 μg/mL		
Ibuprofen	0.073 mg/mL	0.015 mg/mL	0.219 mg/mL		
Biotin (Vitamin B7)	1.71 μg/mL	0.342 μg/mL	3.51 μg/mL		
	Chemoth	erapeutics			
Ara-C Triphosphate ^g (active metabolite of Cytarabine)	$C_{max} = 13.2 \ \mu g/mL^h$	C _{max} = 2.64 μg/mL	2.64 μg/mL ⁱ		
Substand	ce Tested	Test Cond	centration		
		gulants			
	Citrate	4× the vacutainer-specific	, ,		
_	DTA	4× the vacutainer-specific ratio (anticoagulant:blood)			
K ₃ E	DTA	4× the vacutainer-specific ratio (anticoagulant:blood)			
Lithium	Heparin	4× the vacutainer-specific ratio (anticoagulant:blood)			
Sodium	Heparin	4× the vacutainer-specific ratio (anticoagulant:blood)			
Acid Citrate D	extrose (ACD)	4× the vacutainer-specific ratio (anticoagulant:blood)			
Sodium Polyaneth	olesulfonate (SPS)	4× the vacutainer-specific ratio (anticoagulant:blood)			
	Disinfo	ectants			
Ble	ach	5% v/v (3,000 ppm)			
Eth	anol	7% v/v			
Povidone	(iodinated)	1% v/v			

^a EP37: Supplemental Table for Interference Testing in Clinical Chemistry – First Edition (2018), unless otherwise noted.

^b Calculated as a 5-fold dilution of the whole blood reference range (blood diluted in bottle media).

e Albumin testing was performed over a range of concentrations; an effect on detection near LoD was observed at >15 mg/mL.

^d Wakeman, LJ et al, Fibrinogen reference range in adolescents. *Blood* 112, 4091 (2008).

^e EP07: Interference Testing in Clinical Chemistry; Approved Guideline—Third Edition (2018); values for IgG.

f Cells/mL calculated from mass and human genome size.

^g Pyrimidine analog that inhibits DNA polymerase activity.

h Liston, D.R. & Davis, M. Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. Clin Cancer Research 23, 3489-3498 (2017).

REF

RFIT-ASY-0147

¹ 20% of *C_{max}* represents the maximum expected concentration of drug metabolite in blood (McEvoy, G.K. (ed.). American Hospital Formulary Service. AHFS Drug Information. American Society of Health-System Pharmacists, Bethesda, MD. 2007, p. 994).

Valid and accurate results were obtained for each sample spiked with the high concentrations of potentially competing microorganisms indicated in Table 134 (no interference).

Table 134. Competing Microorganisms Tested - No Interference Observed

Substance Tested	Test Concentration					
On-Panel						
Staphylococcus epidermidis	8.78E+08 CFU/mL					
Escherichia coli	1.38E+08 CFU/mL					
Streptococcus mitis	6.95E+08 CFU/mL					
Stenotrophomonas maltophilia	7.40E+08 CFU/mL					
Bacteroides fragilis	5.40E+07 CFU/mL ^a					
Off-	Panel					
Corynebacterium jeikeium	8.70E+08 CFU/mL					
Bacillus cereus	8.40E+08 CFU/mL					
Micrococcus luteus	8.40E+08 CFU/mL					
Clostridium perfringens	1.73E+08 cells/mL ^a					
Cutibacterium (Propionibacterium) acnes	1.12E+07 cells/mL ^a					

^a Culture concentration in cells/mL determined via optical density (OD₆₀₀).

Valid and accurate results were obtained for each sample prepared in 1:1 (v/v) ratio with the various bottle/culture media (aerobic, anaerobic, pediatric, and myco media formulations) indicated in Table 135 (no interference).

Table 135. Blood Culture Media Tested - No Interference Observed

	Table 135. Blood Culture Media Tested	- No litterierence observed		
	Bottle Type/Description	Bottle Media Tested		
	Standard aerobic	bioMérieux BACT/ALERT® SA		
္ပ	Aerobic (with adsorbent polymeric beads)	bioMérieux BACT/ALERT® FA Plus		
erobic	Aerobic (with activated charcoal) ^a	bioMérieux BACT/ALERT® FA ª		
e c	Standard aerobic	BD BACTEC™ Standard/10 Aerobic/F		
<	Aerobic (with resin for antibiotic neutralization)	BD BACTEC [™] Plus Aerobic/F		
	Aerobic	Thermo Scientific [™] VersaTrek [™] REDOX [™] 1		
	Standard anaerobic	bioMérieux BACT/ALERT® SN		
ပ	Anaerobic (with adsorbent polymeric beads)	bioMérieux BACT/ALERT® FN Plus		
Anaerobic	Anaerobic (with activated charcoal) ^a	bioMérieux BACT/ALERT® FNª		
erc	Standard anaerobic	BD BACTEC [™] Standard Anaerobic/F		
La	Anaerobic (with resin for antibiotic neutralization)	BD BACTEC™ Plus Anaerobic/F		
⋖	Lytic anaerobic	BD BACTEC™ Lytic/10 Anaerobic/F		
	Anaerobic	Thermo Scientific™ VersaTrek™ REDOX™ 2		
atr	Pediatric (with adsorbent polymeric beads)	bioMérieux BACT/ALERT® PF Plus		
diatr	Pediatric (with activated charcoal) ^a	bioMérieux BACT/ALERT® PFª		
Pe	Pediatric (with resin for antibiotic neutralization)	BD BACTEC [™] Peds Plus/F		
Myc	Mycobacteria ^b	bioMérieux BACT/ALERT® MPb		
ΣÛ	Mycobacteria and fungi	BD BACTEC [™] Media Myco/F Lytic		

^a Bottles containing activated charcoal are not recommended for use with the BIOFIRE BCID2 Panel.

NOTE: The BIOFIRE BCID2 Panel is not intended for testing of whole blood samples.

NOTE: The BIOFIRE BCID2 Panel is not intended for use with media containing charcoal or culture bottles containing body fluids/specimens other than blood.

NOTE: Avoid contact between samples and bleach prior to testing (bleach can damage nucleic acids).

^b Bottle is not intended for use with blood specimens.

RFIT-ASY-0147

APPENDIX A

Symbols Glossary

Medical o	devices - Symbols to b		ISO 15		and inform	nation to be	supplied	
5.1.1	Manufacturer	5.1.2	2	Authorized representative in the European Community	5.	1.4	Use-By date (YYYY-MM-DD)	
5.1.5 LOT	Batch Code (Lot Number)	5.1.6 REF		Catalog Number		1.7 N	Serial Number	
5.2.8	Do Not Use if Package Is Damaged	5.3.2		Keep Away from Sunlight	5.3	3.7	Temperature Limit	
5.4.2	Do Not Reuse	5.4.3		Consult Instructions for Use	5.5 IV	5.1 'D	In vitro Diagnostic Medical Device	
5.5.5 \(\sum_{n}\)	Contains Sufficient For <n> Tests</n>			5.7.10 UDI		Unique	Unique Device Identifier	
	Use of Symbols in Labeling – 81 FR 38911, Docket No. (FDA-2013-N-0125)							
Rx Only				Prescription Use Only				
United Natio	ons Globally Harmonize	ed System of Cla	assific	ation and Labeling of	chemicals	(GHS) (ST/	SG/AC.10/30)	
Za. g	Serious eye damage, cat. 1			Acute toxicity, cat. 4 & Skin irritation, cat. 2	**		Acute aquatic hazard, cat.1 & Long-term aquatic hazard, cat.1	
European In Vitro	ropean In Vitro Diagnostic Regulation (IVDR 2017/746) UK Medical Devices Regulation 200					ion 2002		
CE	European Uni		UKCA – UK Conformity Assessed					
	Manufacturer Symbols (BioFire Diagnostics, LLC)							
BCID2	BIOFIRE B		A pan		DFIRE BCID Panel et family			
EU	European Union Product Importer							

RFIT-ASY-0147

APPENDIX B

Contact and Legal Information

Customer and Technical Support for U.S. Customers

Reach Us on the Web

http://www.biofiredx.com

Reach Us by E-mail

BioFireSupport@biomerieux.com

Reach Us by Mail

515 Colorow Drive Salt Lake City, UT 84108 USA

Reach Us by Phone

1-800-735-6544 – Toll Free 1-801-736-6354 – Utah

Reach Us by Fax

1-801-588-0507

Customer and Technical Support outside of the U.S.

Contact the local bioMérieux sales representative or an authorized distributor for technical support.

BioFire Diagnostics, LLC 515 Colorow Drive Salt Lake City, UT 84108 USA

Qarad EC-REP BV Pas 257 B-2440 Geel, Belgium

bioMérieux SA 376, Chemin de l'Orme 69280 Marcy l'Etoile-France

bioMérieux UK Ltd Chineham Gate Crockford Lane Basingstoke RG24 8NA

NOTE FOR CUSTOMERS WITHIN THE EUROPEAN UNION (EU): Any serious incident that has occurred in relation to the device must be reported to BioFire Diagnostics, LLC or local bioMérieux sales representative and the competent authority of the Member State in which the user and/or the patient is established.

© Copyright 2007–2023, BioFire Diagnostics, LLC. All rights reserved.

The information contained in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of BioFire Diagnostics, LLC.

BIOFIRE Software, Detector, and Metacall software modules © 2002-2022 BioFire Diagnostics, LLC.

BioFire Diagnostics, BioFire, the BioFire logo, FilmArray, and LCGreen are trademarks of BioFire Diagnostics, LLC or BioFire Defense, LLC and are registered trademarks in the United States.

All other names of products and brands appearing in this manual are trademarks or registered trademarks of their respective owners.

The purchase of this product includes a limited, nontransferable license under specific claims of one or more U.S. patents as listed on BioFire Diagnostics' Web site (http://www.biofiredx.com/LegalNotices/) and owned by BioFire and the University of Utah Research Foundation.

Warranty Information

Product warranty information is available online at:

http://www.BIOFIREdx.com/support/documents/

For warranty information for customers outside the United States, contact the local bioMérieux sales representative or an authorized distributor.

RFIT-ASY-0147

APPENDIX C

References

- 1. Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801 (2016).
- Fleischmann, C. et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 193, 259–272 (2016).
- 3. Fisher, K. & Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 155, 1749–1757 (2009).
- 4. Sood, S., Malhotra, M., Das, B. K. & Kapil, A. Enterococcal infections & antimicrobial resistance. *Indian J. Med. Res.* 128, 111–121 (2008).
- 5. Crank, C. & O'Driscoll, T. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. *Infect. Drug Resist.* 217 (2015) doi:10.2147/IDR.S54125.
- Shahban, S. A., Manjula, N. & Siddiqui, S. Listeria septicaemia following insertion of a dynamic hip screw: A case report and literature review. *Int. J. Surg. Case Rep.* 3, 448–450 (2012).
- 7. Wing, E. J. & Gregory, S. H. Listeria monocytogenes: clinical and experimental update. J. Infect. Dis. 185 Suppl 1, S18-24 (2002).
- 8. Disson, O. & Lecuit, M. Targeting of the central nervous system by Listeria monocytogenes. Virulence 3, 213–221 (2012).
- 9. Vázquez-Boland, J. A. et al. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584-640 (2001).
- 10. Versalovic, J. Manual of Clinical Microbiology. (ASM Press, 2011).
- 11. Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 39, 309–317 (2004).
- McCann, M. T., Gilmore, B. F. & Gorman, S. P. Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J. Pharm. Pharmacol. 60, 1551–1571 (2008).
- 13. Friedman, N. D. et al. Health care—associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann. Intern. Med. 137, 791–797 (2002).
- 14. Curtis, C. & Shetty, N. Recent trends and prevention of infection in the neonatal intensive care unit. Curr. Opin. Infect. Dis. 21, 350–356 (2008).
- 15. Bieber, L. & Kahlmeter, G. Staphylococcus lugdunensis in several niches of the normal skin flora. *Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.* **16**, 385–388 (2010).
- Frank, K. L., Del Pozo, J. L. & Patel, R. From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin. Microbiol. Rev. 21, 111–133 (2008).
- 17. Klotchko, A., Wallace, M. R., Licitra, C. & Sieger, B. Staphylococcus lugdunensis: an emerging pathogen. South. Med. J. 104, 509-514 (2011).
- 18. ABCs 2017 Strep Pneumoniae Report | CDC. https://www.cdc.gov/abcs/reports-findings/survreports/spneu17.html (2019).
- 19. Musher, D. M. How effective is vaccination in preventing pneumococcal disease? Infect. Dis. Clin. North Am. 27, 229-241 (2013).
- 20. Cunningham, M. W. Pathogenesis of Group A Streptococcal Infections. Clin. Microbiol. Rev. 13, 470-511 (2000).
- 21. Efstratiou, A. Group A streptococci in the 1990s. J. Antimicrob. Chemother. 45 Suppl, 3-12 (2000).
- 22. Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: Emergence of a Successful Pathogen. *Clin. Microbiol. Rev.* **21**, 538–582 (2008).
- 23. Dijkshoorn, L., Nemec, A. & Seifert, H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. *Nat. Rev. Microbiol.* **5**, 939–951 (2007).
- 24. Snydman, D. R. et al. National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004. Antimicrob. Agents Chemother. **51**, 1649–1655 (2007).
- 25. Sears, C. L. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin. Microbiol. Rev. 22, 349–369, Table of Contents (2009).
- 26. Wexler, H. M. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).
- 27. Adeolu, M., Alnajar, S., Naushad, S. & S Gupta, R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacteriales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. *Int. J. Syst. Evol. Microbiol.* **66**, 5575–5599 (2016).
- 28. Paterson, D. L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control 34, S20-28; discussion S64-73 (2006).
- 29. Mokracka, J., Koczura, R., Pawlowski, K. & Kaznowski, A. Resistance patterns and integron cassette arrays of Enterobacter cloacae complex strains of human origin. *J. Med. Microbiol.* **60**, 737–743 (2011).
- 30. Biedenbach, D. J., Moet, G. J. & Jones, R. N. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997-2002). *Diagn. Microbiol. Infect. Dis.* **50**, 59–69 (2004).

- Sanders, W. E. & Sanders, C. C. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 10, 220–241 (1997).
- 32. Curie, K., Speller, D. C., Simpson, R. A., Stephens, M. & Cooke, D. I. A hospital epidemic caused by gentamicin-resistant Klebsiella aerogenes. *J. Hyg. (Lond.)* 80, 115–123 (1978).
- 33. Kim, B., Ryu, J., Kim, Y. & Woo, J. Retrospective Analysis of Clinical and Microbiological Aspects of Klebsiella oxytoca Bacteremia Over a 10-Year Period. Eur. J. Clin. Microbiol. Infect. Dis. 21, 419–426 (2002).
- 34. Hoenigl, M. et al. Nosocomial Outbreak of Klebsiella pneumoniae Carbapenemase-Producing Klebsiella oxytoca in Austria. Antimicrob. Agents Chemother. 56, 2158–2161 (2012).
- 35. Klebsiella pneumoniae. http://klebsiella-pneumoniae.org/.
- 36. Long, S. W. et al. Whole-Genome Sequencing of Human Clinical Klebsiella pneumoniae Isolates Reveals Misidentification and Misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere 2, (2017).
- 37. Martin, R. M. & Bachman, M. A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 8, 4 (2018).
- 38. Roach, D. J. *et al.* A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota. *PLOS Genet.* **11**, e1005413 (2015).
- 39. Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. *Clin. Microbiol. Rev.* **11**, 589–603 (1998).
- 40. Laupland, K. B., Parkins, M. D., Ross, T. & Pitout, J. D. D. Population-based laboratory surveillance for tribe Proteeae isolates in a large Canadian health region. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 13, 683–688 (2007).
- Nagano, N., Shibata, N., Saitou, Y., Nagano, Y. & Arakawa, Y. Nosocomial outbreak of infections by Proteus mirabilis that produces extendedspectrum CTX-M-2 type beta-lactamase. J. Clin. Microbiol. 41, 5530–5536 (2003).
- 42. Luzzaro, F. et al. Prevalence and epidemiology of microbial pathogens causing bloodstream infections: results of the OASIS multicenter study. Diagn. Microbiol. Infect. Dis. 69, 363–369 (2011).
- 43. Hanning, I. B., Nutt, J. D. & Ricke, S. C. Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. *Foodborne Pathog. Dis.* **6**, 635–648 (2009).
- 44. Acheson, D. & Hohmann, E. L. Nontyphoidal Salmonellosis. Clin. Infect. Dis. 32, 263–269 (2001).
- Aucken, H. M. & Pitt, T. L. Antibiotic resistance and putative virulence factors of Serratia marcescens with respect to O and K serotypes. J. Med. Microbiol. 47, 1105–1113 (1998).
- 46. Janda, J. M. & Abbott, S. L. The enterobacteria. (ASM Press, 2006).
- 47. Agrawal, A. & Murphy, T. F. Haemophilus influenzae Infections in the H. influenzae Type b Conjugate Vaccine Era. J. Clin. Microbiol. 49, 3728–3732 (2011).
- 48. Kilian, M. A taxonomic study of the genus Haemophilus, with the proposal of a new species. Microbiology 93, 9-62 (1976).
- 49. Ladhani, S. et al. Invasive Haemophilus influenzae Disease, Europe, 1996–2006. Emerg. Infect. Dis. 16, 455–463 (2010).
- 50. Abdeldaim, G. M. K. et al. Quantitative fucK gene polymerase chain reaction on sputum and nasopharyngeal secretions to detect Haemophilus influenzae pneumonia. *Diagn. Microbiol. Infect. Dis.* 76, 141–146 (2013).
- 51. Agrawal, A. & Murphy, T. F. Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. *J. Clin. Microbiol.* **49**, 3728–3732 (2011).
- 52. Ladhani, S. et al. Invasive Haemophilus influenzae Disease, Europe, 1996-2006. Emerg. Infect. Dis. 16, 455-463 (2010).
- 53. Bilukha, O. O., Rosenstein, N., & National Center for Infectious Diseases, Centers for Disease Control and Prevention (CDC). Prevention and control of meningococcal disease. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 54, 1–21 (2005).
- 54. Claus, H., Maiden, M. C. J., Maag, R., Frosch, M. & Vogel, U. Many carried meningococci lack the genes required for capsule synthesis and transport. *Microbiol. Read. Engl.* **148**, 1813–1819 (2002).
- 55. Johswich, K. O. et al. Invasive Potential of Nonencapsulated Disease Isolates of Neisseria meningitidis. Infect. Immun. 80, 2346–2353 (2012).
- 56. Milonovich, L. M. Meningococcemia: epidemiology, pathophysiology, and management. *J. Pediatr. Health Care Off. Publ. Natl. Assoc. Pediatr. Nurse Assoc. Pract.* **21**, 75–80 (2007).
- 57. Pollard, A. J., Nadel, S., Ninis, N., Faust, S. N. & Levin, M. Emergency management of meningococcal disease: eight years on. *Arch. Dis. Child.* **92**, 283–286 (2007).
- 58. Yang, M. A., Lee, J., Choi, E. H. & Lee, H. J. Pseudomonas aeruginosa bacteremia in children over ten consecutive years: analysis of clinical characteristics, risk factors of multi-drug resistance and clinical outcomes. *J. Korean Med. Sci.* **26**, 612–618 (2011).
- 59. Haynes, A. et al. Syndecan 1 shedding contributes to Pseudomonas aeruginosa sepsis. Infect. Immun. 73, 7914–7921 (2005).
- 60. Morales, E. et al. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv. Res. 12, 122 (2012).

- 61. Brooke, J. S. Stenotrophomonas maltophilia: an Emerging Global Opportunistic Pathogen. Clin. Microbiol. Rev. 25, 2-41 (2012).
- 62. Falagas, M. E., Kastoris, A. C., Vouloumanou, E. K. & Dimopoulos, G. Community-acquired Stenotrophomonas maltophilia infections: a systematic review. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 28, 719–730 (2009).
- 63. Yeshurun, M. et al. Clinical characteristics of Stenotrophomonas maltophilia infection in hematopoietic stem cell transplantation recipients: a single center experience. Infection 38, 211–215 (2010).
- 64. Klotz, S. A., Chasin, B. S., Powell, B., Gaur, N. K. & Lipke, P. N. Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. *Diagn. Microbiol. Infect. Dis.* **59**, 401–406 (2007).
- 65. Lee, W. G. et al. First three reported cases of nosocomial fungemia caused by Candida auris. J. Clin. Microbiol. 49, 3139–3142 (2011).
- 66. Pfaller, M. A. et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. J. Clin. Microbiol. 43, 5848–5859 (2005).
- 67. Pfaller, M. A. *et al.* International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. *J. Clin. Microbiol.* **39.** 3254–3259 (2001).
- 68. Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133-163 (2007).
- Krcmery, V. & Barnes, A. J. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J. Hosp. Infect. 50, 243–260 (2002).
- 70. Cornet, M. et al. Molecular identification of closely related Candida species using two ribosomal intergenic spacer fingerprinting methods. J. Mol. Diagn. JMD 13, 12–22 (2011).
- 71. Satoh, K. et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. *Microbiol. Immunol.* 53, 41–44 (2009).
- 72. Lockhart, S. R. et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 64, 134–140 (2017).
- 73. Jeffery-Smith, A. et al. Candida auris: a Review of the Literature. Clin. Microbiol. Rev. 31, e00029-17, /cmr/31/1/e00029-17.atom (2017).
- 74. Chowdhary, A., Sharma, C. & Meis, J. F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. *PLoS Pathog.* **13**, e1006290 (2017).
- 75. Versalovic, J. Manual of clinical microbiology. (ASM Press, 2011).
- 76. Hasimoto e Souza, L. K. et al. Clinical and microbiological features of cryptococcal meningitis. Rev. Soc. Bras. Med. Trop. 46, 343-347 (2013).
- 77. Marr, K. A. Cryptococcus gattii as an important fungal pathogen of western North America. Expert Rev. Anti Infect. Ther. 10, 637–643 (2012).
- 78. McCulloh, R. J. et al. Cryptococcus gattii genotype VGI infection in New England. Pediatr. Infect. Dis. J. 30, 1111–1114 (2011).
- 79. Centers for Disease Control and Prevention (CDC). Emergence of Cryptococcus gattii-- Pacific Northwest, 2004-2010. MMWR Morb. Mortal. Wkly. Rep. 59, 865–868 (2010).
- 80. Hagen, F. et al. Autochthonous and Dormant Cryptococcus gattii Infections in Europe. Emerg. Infect. Dis. 18, 1618-1624 (2012).
- 81. Sarria et al 2001 Infections caused by Kluyvera SPecies.pdf.
- 82. Cantón, R., González-Alba, J. M. & Galán, J. C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 3, (2012).
- 83. Arunagiri, K., Sekar, B., Sangeetha, G. & John, J. Detection and characterization of metallo-β-lactamases in Pseudomonas aeruginosa by phenotypic and molecular methods from clinical samples in a tertiary care hospital. *West Indian Med. J.* **61**, 778–783 (2012).
- 84. Bush, K., Jacoby, G. A. & Medeiros, A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39, 1211 (1995).
- 85. Zhao, W.-H., Chen, G., Ito, R. & Hu, Z.-Q. Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. *J. Med. Microbiol.* **58**, 1080–1085 (2009).
- Peleg, A., Franklin, C., Bell, J. & Spelman, D. Dissemination of the Metallo-β-Lactamase Gene blaIMP-4 among Gram-Negative Pathogens in a Clinical Setting in Australia. Clin. Infect. Dis. 41, 1549–1556 (2005).
- 87. Naas, T. et al. Beta-lactamase database (BLDB) structure and function. J. Enzyme Inhib. Med. Chem. 32, 917-919 (2017).
- 88. Arnold, R. S. et al. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South. Med. J. 104, 40-45 (2011).
- Landman, D., Salamera, J., Singh, M. & Quale, J. Accuracy of carbapenem nonsusceptibility for identification of KPC-possessing Enterobacteriaceae by use of the revised CLSI breakpoints. *J. Clin. Microbiol.* 49, 3931–3933 (2011).
- 90. Nordmann, P., Cuzon, G. & Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. *Lancet Infect. Dis.* **9**, 228–236 (2009).
- 91. Bratu, S., Landman, D., Alam, M., Tolentino, E. & Quale, J. Detection of KPC carbapenem-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York. *Antimicrob. Agents Chemother.* **49**, 776–778 (2005).

- 92. CDC. mcr -1, Threatens Last-Resort Antibiotics. *Centers for Disease Control and Prevention* https://www.cdc.gov/drugresistance/solutions-initiative/stories/gene-reported-mcr.html (2019).
- 93. Carroll, L. M. et al. Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio 10, (2019).
- Liu, Y.-Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).
- 95. Gao, R. et al. Dissemination and Mechanism for the MCR-1 Colistin Resistance. PLoS Pathog. 12, e1005957 (2016).
- 96. Shore, A. C. *et al.* Detection of Staphylococcal Cassette Chromosome mec Type XI Carrying Highly Divergent mecA, mecI, mecR1, blaZ, and ccr Genes in Human Clinical Isolates of Clonal Complex 130 Methicillin-Resistant Staphylococcus aureus. *Antimicrob. Agents Chemother.* **55**, 3765–3773 (2011).
- 97. Hiramatsu, K., Kondo, N. & Ito, T. Genetic basis for molecular epidemiology of MRSA. J. Infect. Chemother. 2, 117–129 (1996).
- 98. Ito, T. *et al.* Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. *Antimicrob. Agents Chemother.* **45**, 1323–1336 (2001).
- Huletsky, A. et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J. Clin. Microbiol. 42, 1875–1884 (2004).
- 100. Tenover, F. C. et al. Updating Molecular Diagnostics for Detecting Methicillin-susceptible and Methicillin-resistant Staphylococcus aureus in Blood Culture Bottles. J. Clin. Microbiol. (2019) doi:10.1128/JCM.01195-19.
- 101. Pillai, D. R., McGeer, A. & Low, D. E. New Delhi metallo-β-lactamase-1 in Enterobacteriaceae: emerging resistance. *Can. Med. Assoc. J.* **183**, 59–64 (2011).
- 102. Rasheed, J. K. et al. New Delhi Metallo-β-Lactamase–producing Enterobacteriaceae, United States. Emerg. Infect. Dis. 19, 870–878 (2013).
- 103. Rolain, J. M., Parola, P. & Cornaglia, G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? *Clin. Microbiol. Infect.* **16**, 1699–1701 (2010).
- 104. Tada, T. et al. NDM-8 metallo-β-lactamase in a multidrug-resistant Escherichia coli strain isolated in Nepal. Antimicrob. Agents Chemother. 57, 2394–2396 (2013).
- 105. Struelens, M. J. et al. New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 15, (2010).
- 106. Papagiannitsis, C. C. et al. Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing Enterobacter cloacae from a Czech patient previously hospitalized in Sri Lanka. Folia Microbiol. (Praha) 58, 547–549 (2013).
- 107. Evans, B. A. & Amyes, S. G. B. OXA β-Lactamases. Clin. Microbiol. Rev. 27, 241–263 (2014).
- 108. Poirel, L., Potron, A. & Nordmann, P. OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother. 67, 1597–1606 (2012).
- 109. Gorrie, C., Higgs, C., Carter, G., Stinear, T. P. & Howden, B. Genomics of vancomycin-resistant Enterococcus faecium. *Microb. Genomics* 5, (2019).
- 110. Zirakzadeh, A. & Patel, R. Vancomycin-resistant enterococci: colonization, infection, detection, and treatment. *Mayo Clin. Proc.* **81**, 529–536 (2006).
- 111. Juan, C. et al. Characterization of the New Metallo-β-Lactamase VIM-13 and Its Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in Spain. Antimicrob. Agents Chemother. **52**, 3589–3596 (2008).
- 112. Biosafety in Microbiological and Biomedical Laboratories. (2009).
- 113. Protection of Laboratory Workers From Occupationally Acquired Infections; Approved Guideline M29.
- 114. Adams, D. A. et al. Summary of Notifiable Diseases United States, 2011. MMWR Morb. Mortal. Wkly. Rep. 60, 1-117 (2013).
- 115. CIFOR Analysis of State Legal Authorities. http://www.cifor.us/.
- 116. Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions; NCCLS Approved Guideline. (2006).
- 117. User Protocol for Evaluation of Qualitative Test Performance; NCCLS Approved Guideline. (2008).

RFIT-ASY-0147

REVISION HISTORY

Version	Revision Date	Description of Revision(s)
01	April 2020	Initial Release
		Update to:
		Minor typographical errors caught after the release of the product
		Table 8 to show Enterobacterales as Not Detected in last row (this was an error in the first revision) and minor wording changes for consistency and clarity.
02	June 2020	 Table 10 to show Staphylococcus aureus as Detected in last two rows (this was an error in the first revision).
		Addition of:
		The BIOFIRE BCID2 Panel panel-specific pouch module software download link to first page.
		Update to:
		Minor typographical errors
		CE mark to include Notified Body # 2797
03	July 2021	 Safety Precautions section to provide additional information and warnings on the Sample Buffer. Note: This information was previously only contained within the SDS.
		Addition of:
		EUDAMED link to the EU Summary of Safety and Performance required for compliance to the European In Vitro Diagnostic Regulation (IVDR 2017/746)
		Note for Staphylococcus aureus mecA/C and MREJ interpretation was added
		Additions:
		UKCA Symbol to cover and symbols glossary
		UKCA Authorized Rep Address added
		UDI Symbol to symbols glossary
		Additional Sample Buffer ampoule steps
04	June 2022	Update to:
		EC updated to EU in front of importer information
		Removal of volumes in materials provided section
		Removals:
		"DO NOT REFRIGERATE" statement from the "Reagent Storage, Handling and Stability" section.
		Additions:
		Ingredients statement added to the Materials Provided section
		Update to:
05		 Updated classification of Propionibacterium acnes to Cutibacterium (Propionbacterium) acnes in Table 134.
05	July 2023	Minor typographical errors
		Customer Technical Support email
		Branding
		 Summary of Organisms section updated for Neisseria meningitidis to address unencapsulated strains of N. meningitidis.

RFIT-ASY-0147

	•	Limitations section to further point out that the BIOFIRE BCID2 Panel does
		not detect unencapsulated strains of N. meningitidis. (Previously mentioned
		as a note in Analytical Reactivity (Inclusivity) section

INDEX

Intended Purpose	1
Intended Use	1
Intended User and Use Environment	2
Summary and Explanation of the Test	3
Summary of Detected Organisms	3
Principle of the Procedure	10
Materials Provided	11
Materials Required But Not Provided	11
Warnings and Precautions	11
General Precautions	11
Safety Precautions	12
Laboratory Precautions	13
Precaution Related to Public Health	14
Precaution Related to REACH Regulation (EC 1907/2006)	14
Reagent Storage, Handling, and Stability	15
Sample Requirements	15
Procedure	16
Step 1: Prepare Pouch	16
Step 2: Hydrate Pouch	16
Step 3: Prepare Sample Mix	17
Step 4: Load Sample Mix	18
Step 5: Run Pouch	18
Quality Control	20
Process Controls	20
Monitoring Test System Performance	20
External Controls	20
Interpretation of Results	21
Assay Interpretation	21
Organism and Antimicrobial Resistance Gene Interpretation	21

RFIT-ASY-0147

BIOFIRE BCID2 Panel Test Report	36
Limitations	39
Expected Values	41
Performance Characteristics	49
Clinical Performance	49
Evaluation of Blood Culture Bottle Types	80
Limit of Detection	82
Analytical Reactivity (Inclusivity)	83
Analytical Specificity (Cross-Reactivity and Exclusivity)	101
Reproducibility	105
Interference	111
Appendix A	113
Symbols Glossary	113
Appendix B	114
Contact and Legal Information	114
Warranty Information	114
Appendix C	115
References	115
Revision History	119
Index	120