

INCIDENCE

- 7-18% of hospitalized patients.⁵
- 300,000 people die each year from AKI in the US.⁵
- Up to **50% of critically ill patients** develop some stage of AKI.⁶

MORBIDITY & MORTALITY

- 9-times higher risk of development of Chronic Kidney Disease.⁷
- 2-times higher risk of premature death.⁷
- In Europe, the mortality rate for AKI ranges from 17.2 to 26.1%.⁸

COST

- Estimated annual costs to US healthcare system attributable to hospital-acquired AKI is > \$10 billion.9
- In the UK: "The annual AKI-related cost is estimated as €1.12 billion per year".¹⁰
- Length of stay increase between 1.1 days and 3.2 days.¹¹

For a typical 400-bed community hospital, the incremental resources consumed by AKI in the ICU often **exceed \$20M and 8.500 bed days annually.**¹²

AKI is potentially worse for an individual than a myocardial infarction

A study of over 36,000 hospitalized veterans demonstrated that patients who developed AKI without myocardial infarction (MI) had a higher mortality than those who suffered a MI without developing AKI.¹³

You might also be interested in a Selection of Publications on the "risk assessment

of Acute Kidney Injury using novel biomarkers"

RISK ASSESSMENT OF ACUTE KIDNEY INJURY USING NOVEL BIOMARKERS Selection of publications

****T***TT4

PIONEERING DIAGNOSTICS

Contact your local bioMérieux representative for any further information

REFERENCES

09-19 Add 1. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. *Critical care.* 2007;11(2):R31.

 2. Ricci Z, Ronco C. New insights in acute kidney failure in the critically ill. Swiss medical weekly. 2012;142:w13662.
 3. Zuk A, Bonventre JV. Acute Kidney Injury. Annual review of

medicine. 2016;67:293-307. 4. Dennen P, Douglas IS, Anderson R. **Acute kidney injury in the**

intensive care unit: an update and primer for the intensivist. Critical care medicine. 2010;38(1):261-75.

5. Lewington AJ, Cerda J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney international. 2013;84(3):457-67.

6. Mandelbaum T, et al. Outcome of critically ill patients with acute kidney injury using the Acute Kidney Injury Network criteria. Critical care medicine. 2011;39(12):2659-64.

7. Mehta RL, Cerda J, Burdmann EA, et al. International Society of Nephrology's Oby25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet (London, England). 2015;385(9987):2616-43.

Bouchard J, Mehta RL. Acute Kidney Injury in Western Countries. Kidney diseases (Basel, Switzerland). 2016;2(3):103-10.
 Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. Journal

of the American Society of Nephrology : JASN. 2005;16(11):3365-70. 10. Lewington A, Hall P. **The cost of ignoring acute kidney injury**. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2014;29(7):1270-2.

11. Silver SA, Long J, Zheng Y, Chertow GM. **Cost of Acute Kidney Injury in Hospitalized Patients.** *Journal of hospital medicine*. 2017;12(2):70-6.

12. Calculated from: [a] American Hospital Association Database, accessed Jan 2014 on 6,416 hospitals, [b] Wunsch H, Angus DC, Harrison DA, Linde-Zwirble WT, Rowan KM. Comparison of medical admissions to intensive care units in the United States and United Kingdom. American journal of respiratory and critical care medicine. 2011;183(12):1666-73, [c] Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, et al. Cost and Mortality Associated With Postoperative Acute Kidney Injury. Annals of surgery. 2015;261(6):1207-14.

13. Chawla LS, Amdur RL, Shaw AD, Faselis C, Palant CE, Kimmel PL. Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. *Clinical journal of the American Society of Nephrology* : CJASN. 2014;9(3):448-56.

14. Figure adapted from: [5] Lewington AJ, et al. Kidney international. 2013;84(3):457-67. and [15] Kellum JA, et al. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2016;31(1):16-22.

15. Kellum JA, Chawla LS. Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2016;31(1):16-22.

16. Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Critical care (London, England). 2013;17(1):R25.

17. Gocze I, Koch M, Renner P, et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery. *PloS one*. 2015;10(3):e0120863.

 Martensson J, Martling CR, Bell M. Novel biomarkers of acute kidney injury and failure: clinical applicability. British journal of anaesthesia. 2012;109(6):843-50.

Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Critical care (London, England). 2016;20(1):299.
 Wlodzimirow KA, Abu-Hanna A, Slabbekoorn M, Chamuleau RA, Schultz MJ, Bouman CS. A comparison of RIFLE with and without urine output

 Wlodzimirow KA, Abu-Hanna A, Slabbekoorn M, Chamuleau RA, Schultz MJ, Bouman CS. A comparison of RIFLE with and without urine output criteria for acute kidney injury in critically ill patients. Critical care (London, England). 2012;16(5):R200.

21. Katz N, Ronco C. Acute kidney stress--a useful term based on evolution in the understanding of acute kidney injury. Critical care (London, England). 2016;20:23-.

22. Legrand M, Payen D. Understanding urine output in critically ill patients. Annals of intensive care. 2011;1(1):13.

 Gould CV, Umscheid CA, Agarwal RK, Kuntz G, Pegues DA. Guideline for prevention of catheter-associated urinary tract infections 2009. Infection control and hospital epidemiology. 2010;31(4):319-26.

bioMérieux S.A. • 69280 Marcy l'Étoile • France • Tel.: + 33 (0)4 78 87 20 00 • Fax: +33 (0)4 78 87 20 90 www.biomerieux.com

Acute Kidney Injury (AKI) is Prevalent, Costly and Deadly

→

AKI

is twice as

deadly as a

myocardial

infarction

(MI)

AKI: Acute Kidney Injury

RISK ASSESSMENT OF AKI: BIOMARKERS

Acute Kidney Injury (AKI),

is an abrupt loss of kidney function that develops within 7 days.¹

It was previously known as Acute Renal Failure.² It is a global public health concern impacting ~13.3 million patients per year.³

Etiology of AKI in the ICU

FIVE MOST COMMON CAUSES OF AKI IN THE ICU⁴

Sepsis

- Major surgery
- Low cardiac output
- Hypovolemia

Antimicrobials Angiotensin-converting-enzyme inhibitor Angiotensin II receptor blockers

Nephrotoxic Medications

- Radiocontrast dye
- Chemotherapeutic agents

OTHER COMMON CAUSES OF AKI IN THE ICU

Hepato-renal syndrome

Cardiopulmonary bypass

Trauma

- Abdominal compartment syndrome Rhabdomvolvsis
- Obstruction

Recommended management of AKI

KDIGO Consensus Guideline for AKI

	AKI Stage		
High Risk	Stage 1	Stage 2	Stage 3
Discontinue all nephrotoxic agents when possible			
Ensure volume status and perfusion pressure			
Consider functional hemodynamic monitoring			
Monitor serum creatinine and urine output			
Avoid hyperglycemia			
Consider alternatives to radiocontrast procedures			
	Non-invasive diagnostic workup Consider invasive diagnostic workup		
		Check for changes	in drug dosing
	Consider renal remplacement therapy Consider ICU admission		
			Avoid subclavian catheters if possible

Adapted from KDIGO Guidelines 2012

KDIGO highlights that in accordance with your current practice, these particular actions could be considered when patients are at risk for AKI.

DIAGNOSIS OF AKI: FUNCTIONAL BIOMARKERS