Acute Kidney Injury (AKI) is Prevalent, Costly and Deadly

INCIDENCE
- 7.18% of hospitalized patients.
- 200,000 people die each year from AKI in the US.
- Up to 50% of critically ill patients develop some stage of AKI.

MORBIDITY & MORTALITY
- 9-times higher risk of development of Chronic Kidney Disease.
- 2-times higher risk of premature death.
- In Europe, the mortality rate for AKI ranges from 17.2 to 26.3%.

Cost
- Estimated annual costs to US healthcare system attributable to hospital-acquired AKI is > $10 billion.
- In the UK, “The annual AKI-related cost is estimated as £1.12 billion per year.”
- Length of stay increase between 1.1 days and 3.2 days.

AKI is twice as deadly as a myocardial infarction (MI)

You might also be interested in a Selection of Publications on the “risk assessment of Acute Kidney Injury using novel biomarkers”

AKI: Acute Kidney Injury

For a typical 400-bed community hospital, the incremental resources consumed by AKI in the ICU often exceed $20M and 8,500 bed days annually.

A study of over 36,000 hospitalized veterans demonstrated that patients who developed AKI without myocardial infarction (MI) had a higher mortality than those who suffered a MI without developing AKI.

A PIc of Acute Kidney Injury

You might also be interested in a Selection of Publications on the “risk assessment of Acute Kidney Injury using novel biomarkers”

AKI: Acute Kidney Injury
Acute Kidney Injury (AKI), is an abrupt loss of kidney function that develops within 7 days. It was previously known as Acute Renal Failure. It is a global public health concern impacting ~13.3 million patients per year.

Etiology of AKI in the ICU

- Sepsis
- Major surgery
- Low cardiac output
- Hypovolemia
- Nephrotoxic Medications
- Antibiotics
- Angiotensin-converting enzyme inhibitor
- Angiotensin II receptor blockers
- Radiocontrast dye
- Chemotherapeutic agents

Recommended management of AKI

KDIGO Consensus Guideline for AKI

<table>
<thead>
<tr>
<th>AKI Stage</th>
<th>High Risk</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinue all nephrotoxic agents when possible</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ensure volume status and perfusion pressure</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Consider functional hemodynamic monitoring</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Monitor serum creatinine and urine output</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Avoid hyperglycemia</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Consider alternatives to radiocontrast procedures</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Non-invasive diagnostic workup</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Consider invasive diagnostic workup</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Check for changes in drug dosing</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Consider renal replacement therapy</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Consider ICU admission</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Avoid subclavian catheters if possible</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

KDIGO highlights that in accordance with your current practice, these particular actions could be considered when patients are at risk for AKI.

FIVE MOST COMMON CAUSES OF AKI IN THE ICU

- Infection
- Major surgery
- Low cardiac output
- Hypovolemia

OTHER COMMON CAUSES OF AKI IN THE ICU

- Hepatorenal syndrome
- Trauma
- Cardiopulmonary bypass
- Abdominal compartment syndrome
- Rhabdomyolysis
- Obstruction

With Novel Biomarkers, you can predict kidney stress BEFORE damage occurs. Serum Creatinine and Urine Output are NOT SPECIFIC to Kidney Stress.

KDIGO

Adapted from KDIGO Guidelines 2012.

Invasive diagnostic studies performed to identify biomarkers of early AKI risk assessment

<table>
<thead>
<tr>
<th>Biomarkers</th>
<th>AUC (with 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMP-2</td>
<td>0.7</td>
</tr>
<tr>
<td>IGFBP7</td>
<td>0.8</td>
</tr>
<tr>
<td>NGAL</td>
<td>0.6</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>0.5</td>
</tr>
<tr>
<td>KIM-1</td>
<td>0.7</td>
</tr>
<tr>
<td>Pi-GST</td>
<td>0.8</td>
</tr>
<tr>
<td>L-FABP</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Symptomatic (Diagnosis)

Functional Biomarkers: Serum Creatinine, Urine Output

Serum Creatinine

- Lagging indicator
- Minimum of 6 hours must pass to determine urine output
- Affected by healthcare-associated infections

Urine Output

- Lagging indicator
- Maximum of 6 hours must pass to determine urine output
- Tedium to measure
- Affected by healthcare-associated infections

Risk Assessment of AKI: Biomarkers

- **Kidney stress is a precursor of AKI.**

SAPPHIRE Study

- 35 sites: 20 US and 15 Europe
- 744 patient cohort
- Identify the best biomarker among 340 proteins

Urinary IGFBP7 and TIMP-2 were the best-performing markers in the discovery study.

Tubular Cell Cycle Arrest Biomarkers

- TIMP-2 and IGFBP7 are:
 - Biomarkers of cellular stress in the early phase of tubular cell injury caused by a wide variety of insults (inflammation, ischemia, oxidative stress, drugs, and toxins)
 - Involved in G1 cell-cycle arrest that prevents cells from dividing until damage can be repaired
 - Both biomarkers appear as "alarm" proteins for other nearby cells

Adapted from Kellum and al.

Diagnosis of AKI: Functional Biomarkers

- Serum Creatinine and Urine Output are NOT SPECIFIC to Kidney Stress.

Normal vs Increased Risk vs Damage vs Decreased GFR vs Kidney Failure

AUC (Area under the curve)

<table>
<thead>
<tr>
<th>AUC (with 95% CI)</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Kellum and al.

References

1. [Acute Kidney Injury (AKI)](https://www.atsjournals.org/content/142/1S/14)
2. [Acute Kidney Injury (AKI)](https://www.atsjournals.org/content/142/1S/14)
3. [Acute Kidney Injury (AKI)](https://www.atsjournals.org/content/142/1S/14)