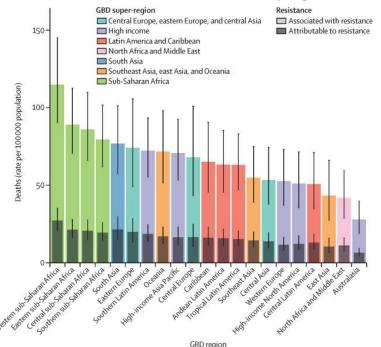
The importance of diagnostics & stewardship in the context of COVID-19

bioSTAR bioMerieux event 21/06/2022

Dr Timothy Miles Rawson BSc (hons), MBBS, MRCP (UK), PDME, DTM&H, PhD NIHR Academic Clinical Fellow in Infectious Diseases and Medical Microbiology Health Protection Research Unit for Healthcare Associated Infections and Antimicrobial Resistance

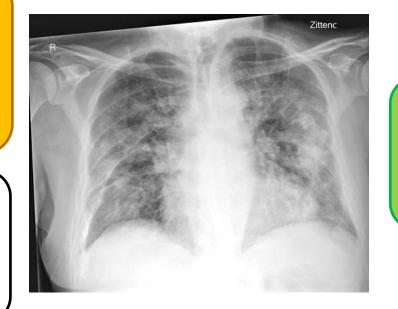

@TmRawson

- 1. What is the impact of COVID-19 on management of bacterial infection?
- 2. Decision making process during infection management.
- 3. How can diagnostics & stewardship may help us optimise antimicrobial use?
- 4. How has management of bacterial infection evolved during the COVID-19 pandemic?

Current and future impact of AMR

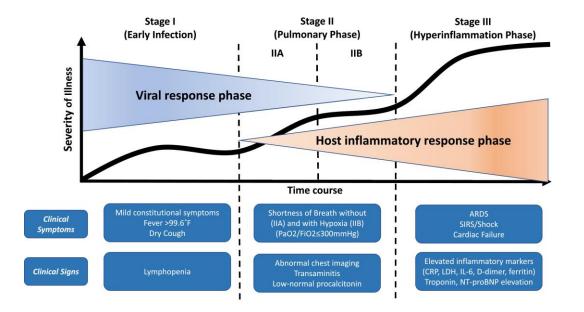
All-age rate of deaths attributable to and associated with bacterial antimicrobial resistance by region in 2019

- Antimicrobial Resistance (AMR) is a global challenge.
- In 2019 drug-resistant bacterial infection:
 - Contributed to 4.95 million deaths.
 - Directly caused **1.27 million deaths**.
- Unchecked, by 2050 direct mortality is estimated to increase to 10 million deaths per year.
- Significant cost to the global economy.


March 2020: Patient 1

Four day history of:

70 years old male Fever Cough Malaise Low oxygen saturations


Medical history:

Diabetes (type 2) Hypertension Good baseline

Differentials: COVID-19 &/or Bacterial infection

Bacterial infection in COVID-19 a challenge for antimicrobial stewardship?

Concerns in early 2020:

- Signs and symptoms that could be consistent with bacterial infection.
- Limited data on rates of bacterial infection associated with COVID-19.
- Perceived risk based on knowledge of influenza.

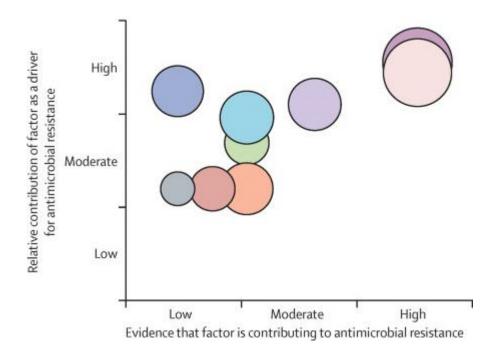
Antimicrobial use, drug-resistance, and the impact of infection on COVID-19.

Reduced antimicrobial use. Reduced notifiable infections.

Introduction of new therapies. Potential bacterial infection risk.

High empiric antimicrobial use. Low rates of reported infections.

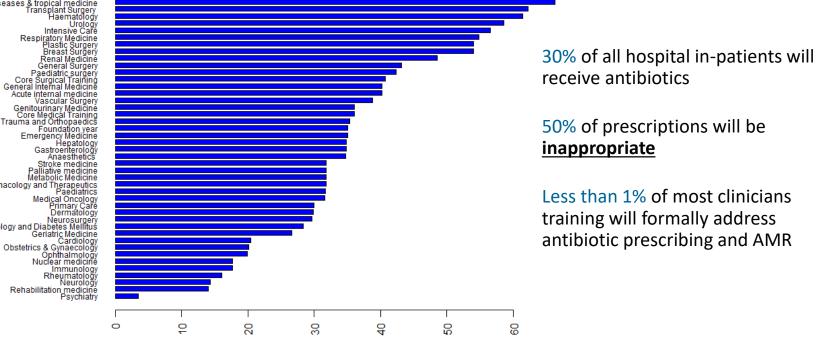
Variable pressures on healthcare. Variation geographically. Variation over time.


High empiric antimicrobial use. High rates of reported infections.

No clear framework for reporting. Difficult to compare data.

Rawson et al. CID 2020; Lansbury et al. JI 2020; Langford et al. CMI 2020; Zhu et al. CMI 2021; Rawson et al. CMI 2020; Langford et al. CMI 2021

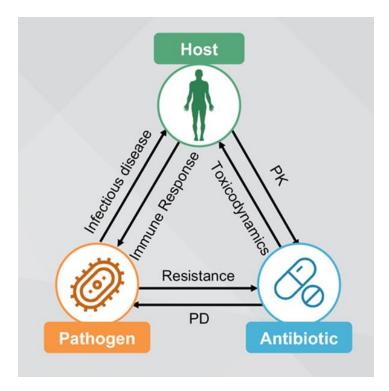
How will COVID-19 impact the modifiable drivers of AMR?



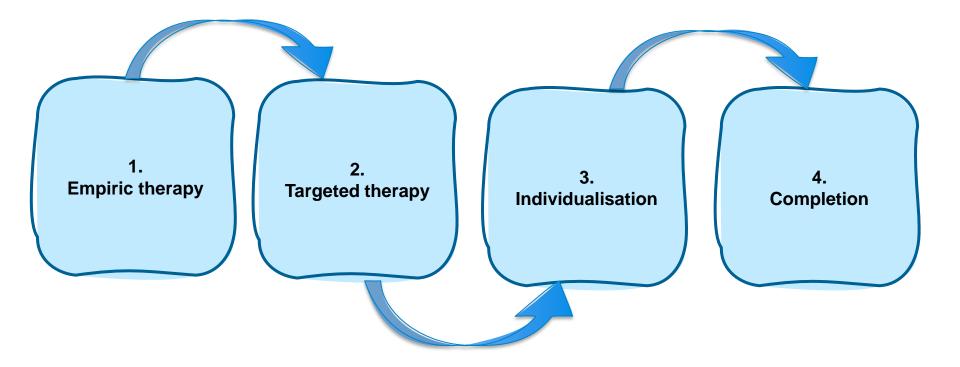
- Antimicrobial resistance is complex.
- Modifiable drivers, many of which have been effected by the COVID-19 pandemic.
- Consider both **positive & negative impact** of the pandemic on these factors.

- Human antimicrobial misuse or overuse
 Animal antimicrobial misuse or overuse
 Environmental contamination
 Health-care transmission
 Suboptimal rapid diagnostics
 Suboptimal vaccination
- Suboptimal dosing, including from substandard and falsified drugs
 Travel
 Mass drug administration for human health

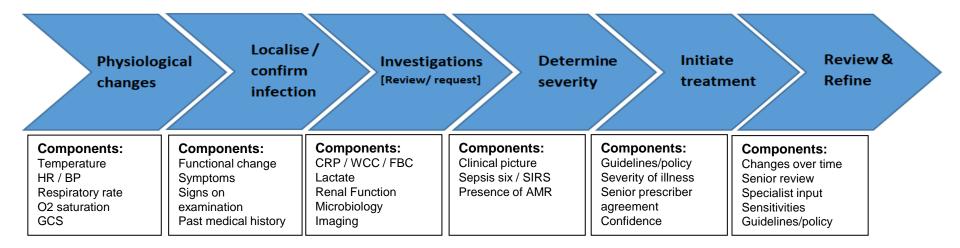
Antibiotic prescribing in hospitals


Infectious diseases & tropical medicine Transplant Surgery Haematology Urology Intensive Caré Respiratory Medicine Plastic Surgery Breast Surgery Renal Medicine General Surgen Paediatric surger Core Surgical Training General Internal Medicine Acute internal medicine Vascular Surgery Genitourinary Medicine Core Medical Training Trauma and Orthopaedics Foundation year Emergency Medicine Hepatology Gastroenterolog Anaesthetics Stroke medicine alliative medicine Metabolic Medicine Clinical Pharmacology and Therapeutics Paediatrics Medical Oncology Primary Caré Dermatology Neurosurgery Endocrinology and Diabetes Mellitus Geriatric Medicine Cardiology Obstetrics & Gynaecology Ophthalmology Nuclear mediciné Immunology Rheumatology Neurology Rehabilitation medicine Psychiatry

Percentage of patients receiving antibiotics per specialty


Rawson et al. JAC 2016; ECDC 2016; Hecker MT. et al. Arch Intern Med 2003

Antimicrobial prescribing

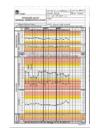


Asin-Prieto, et al. IJC 2015

The four moments of antimicrobial therapy

Antimicrobial decision making

March 2020: Patient 1



Differentials: COVID-19 &/or Bacterial infection

The process of infection management

Decision's Day 1:

Is this an infection? Bacterial / viral / both? Where is the source? Further investigations? Treatment? And how quickly?

Immediate results:

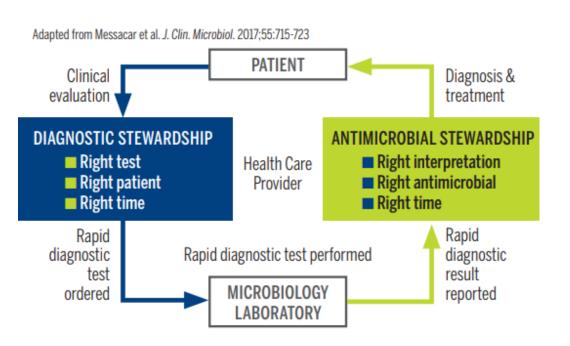
Day

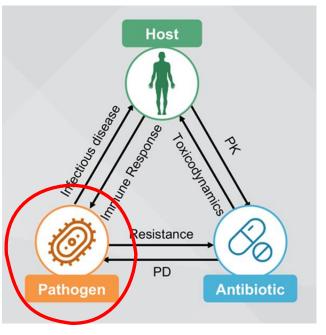
Observations Examination findings Bedside tests Imaging Blood tests (WCC / CRP)

Intermediate results:

Blood tests (hours to days)

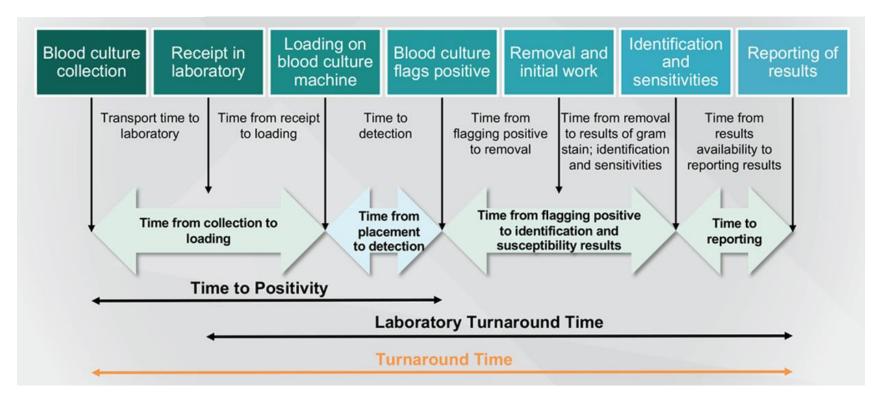
Delayed results:

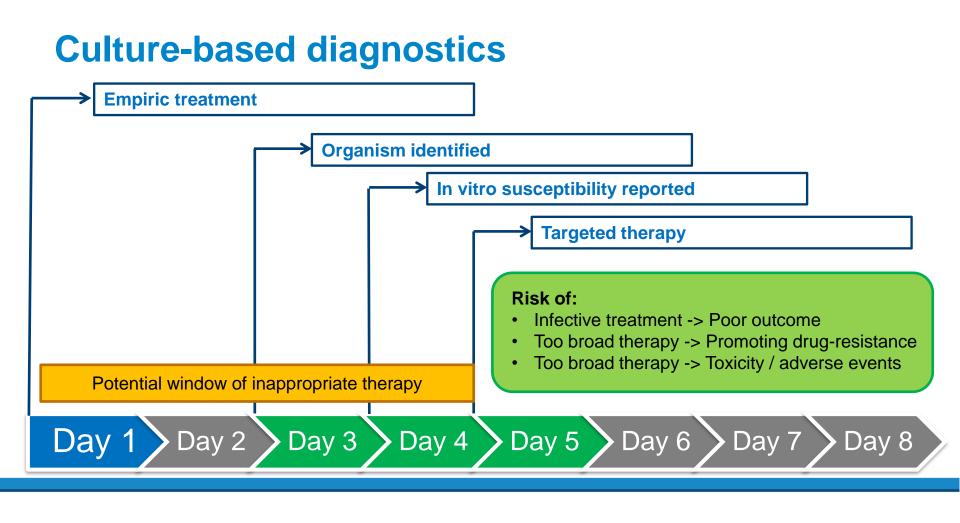

Culture-based microbiology: Organism identified (24-120 hours) Antimicrobial susceptibility (48+ hours)


Day 7

Day 2 📏 Day 3 📏 Day 4 📏 Day 5 📏 Day 6 📏

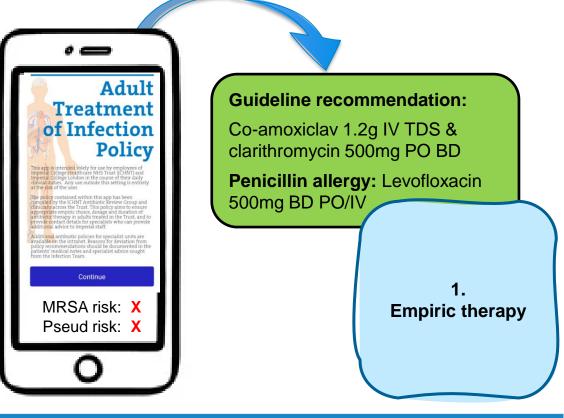
Day 8


Diagnostics and stewardship



Pathogen identification is crucial in supporting antimicrobial optimisation

Turn-around time – blood cultures



March 2020: Patient 1

Working Diagnosis:

COVID-19 with bacterial respiratory co-infection.

However, in COVID-19 bacterial co-infection is uncommon in acute care

Author	Description	Community bacterial infection	Hospital acquired bacterial infection	Antibiotic prescribing
<i>Hughes et al.</i> June 2020	836 patients United Kingdom	3%	6% Throughout	Not reported
<i>Garcia Vidal et al.</i> July 2020	989 patients Spain	3%	4% (57% VAP)	Not reported
<i>Townsend et al.</i> August 2020	117 patients Ireland	-	6% respiratory	73%
<i>Ripa et al.</i> October 2020	731 patients Italy	Not reported	9%	Not reported
<i>Chawla et al.</i> August 2020	16,780 patients USA	3.6%	Not reported	61%
<i>Zhou et al.</i> March 2020	191 patients China	-	15%	95%
<i>Karami et al.</i> October 2020	925 patients Netherlands	1.6%	-	60%

Bacterial infection in acute care Current evidence

~8% bacterial infection in COVID-19.

- 3% present with respiratory bacterial infection.
- Up to 15% hospital acquired bacterial infection.

~72% receive antibiotics.

- Often broad spectrum in nature.
- Duration not always clearly defined.

Heterogeneity in studies.

Few data from low resource settings.

Regional rates of antibiotic prescribing in COVID-19.

Subgroup	Total Patients Prevalen	nce 95	% C.I.	
Multiple Random effects model Heterogeneity: not applicable		2.5 [46.8;	76.0]	
Europe Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 =$	5574 66 3.3266, χ ² ₁₇ = 1415.19 (<i>p</i> < 0.0	3.1 [41.7;	80.4]	
	2152 6 0.5085, χ ² ₁₁ = 99.74 (ρ < 0.01)		74.2]	
China Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 =$	20587 7 3.8226, χ ² ₁₁₄ = 3391.72 (<i>p</i> = 0)	6.2 [68.8;	82.3]	
Middle East Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 =$		6.0 [77.4;	91.7]	
East/Southeast Asia (e Random effects model Heterogeneity: $I^2 = 98\%$, $\tau^2 =$	2177 8	7.5 [47.8;	98.2]	
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 =$ Residual heterogeneity: $l^2 = 9$	= 3.5258, χ^2_{153} = 5678.88 (p = 0)	4.6 [68.3;	- [20 40 60 80 100 Prevalence

Rawson et al. CID 2020; Lansbury et al. JI 2020; Langford et al. CMI 2020; Langford et al. CMI 2021

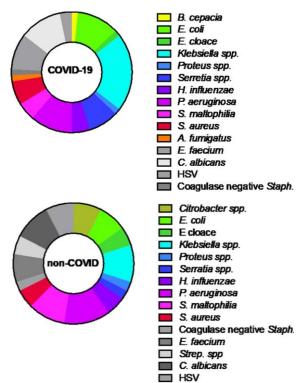
December 2020: Patient 2

Medical history: Asthma, Hypertension, Hypercholesterolaemia, Stroke, Atrial fibrillation **Social history:** Mobile with stick. Walks 1-2 miles.

Recent discharge: COVID +ve - D6 symptoms

Discharge D6

Readmission D8

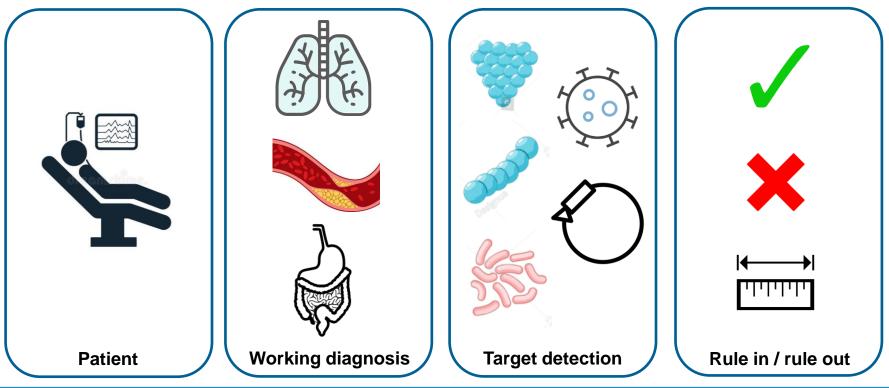

Hospital acquired bacterial infection is observed in COVID-19 patients in critical care

Author	Description	Bacterial infection	Antibiotic prescribing
<i>Yu et al.</i>	226 patients	21%	73%
May 2020	China	(98% HAP)	
<i>Dudoignon et al.</i>	54 patients	37%	65%
June 2020	France	VAP/HAP	
<i>Contou et al.</i>	92 patients	28%	71%
September 2020	France	on admission to ICU	
<i>Buehler et al.</i>	45 patients	42%	89%
October 2020	Geneva	total	
<i>Maes et al.</i>	81 patients	43%	94%
January 2021	United Kingdom	VAP	
Soriano et al.	83 patients	51%	-
September 2020	Spain	ICU infections	
<i>Baskaran et al.</i> October 2020	254 patients United Kingdom	33%	95%

Ventilator associated pneumonia (VAP) in COVID-19

81 COVID-19 vs. 144 non-COVID ventilated patients.

- COVID cohort have more risk factors for VAP:
 - Less immunosuppressed
 - More had ARDS
 - More managed prone
 - Longer ICU stays
 - Longer duration of ventilation
- More suspected VAPS
- More confirmed VAPS
 [48%]
- Similar causative organisms / microbiomes.



[15% vs. 25%] [78% vs. 15%] [49% vs. 0.7%] [Med: 15 vs. 9 days] [Med: 14 vs. 5 days]

[79% vs. 33%] [48% vs. 15%]

Syndromic testing using molecular diagnostics

Syndromic management involves making clinical decisions based on a patient's symptoms and signs.

Molecular diagnostics

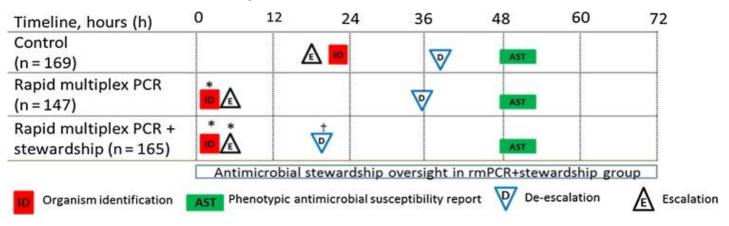
	Benefits	Limitations
Laboratory	 Minimal hands-on time for staff Reduced TAT by over 24 hours High accuracy compared with conventional MALDI-TOF-based identification systems (>90%) Can identify presence of markers of drug- resistance 	 Remains prone to contamination Challenge of polymicrobial cultures May not cover all causative organisms Does not provide phenotypic susceptibility profiles Adjunctive test
Clinical	 Faster time to result reporting Reduced time to treatment optimisation/ de-escalation When linked with antimicrobial/diagnostic stewardship, interventions can be a powerful tool to support decision making 	 Need clear pathways for appropriate use of the test No appropriately powered studies to demonstrate impact on mortality/length of stay Limited literature on the direct impact on antimicrobial resistance
Economic	Potential long-term cost saving	 Relatively high cost assay Laboratories need to adapt process to implement

Real-world potential of syndromic platforms

Potential of syndromic testing in management of lower respiratory tract infections:

- Retrospective study in French ICU's with expert panels selecting antimicrobials.
- Microbiology identified a significant organism in 60% of cases.
- Syndromic rm-PCR detected an organism in 83%.
- Modification of empirical therapy suggested in 123 (77%) cases.
- Increased appropriateness in 83/95 (87%) cases compared to 73/95 (77%) cases with standard of care.

Syndromic testing would have led to:


	Overall, <i>n</i> = 159	CAP, <i>n</i> = 54	HAP, <i>n</i> = 68	VAP, <i>n</i> = 37
Antibiotic modification	123 (77)	37 (69)	54 (79)	32 (87)
De-escalation	63 (40)	20 (37)	25 (37)	18 (49)
Escalation	35 (22)	8 (15)	18 (27)	9 (24)
Undetermined	25 (16)	9 (17)	11 (16)	5 (14)
No change	36 (23)	17 (32)	14 (21)	5 (14)

Syndromic testing linked with stewardship

When performed on the correct patient syndromic testing may help determine:

- Prescence / absence of causative organism
- Prescence / absence of resistance markers
- Augment decision making when linked with other interventions (e.g. procalcitonin, audit/feedback)

Example of the impact of multiplex PCR linked with antimicrobial stewardship with positive blood culture

1. Empiric therapy

Intensivists views on rm-PCR diagnostics

Qualitative interviews of 35 critical care doctors working in 4 UK intensive care units

Perceived benefits of molecular diagnostics	Perceived challenges of molecular diagnostics
Facilitate choosing targeted antibiotics	Unfamiliarity with testing capabilities
Lowers the threshold for starting treatment vs. only influencing choice of agent.	"They wanted more information about the test, including its sensitivity, specificity, and its place in the diagnostic process"
Use as a rule-out test	Potential to drive over-treatment
Increase confidence in prescribing decisions	Failing to detect an organism may not over-ride clinical evidence of infection
"Happier and more confident in decision making"	Concern of deterioration whilst waiting for a molecular diagnostic result

May 2022: Patient 3

PMH: Hypertension, ischaemic heart disease, cancer **SH:** Good baseline, independent in activities

Day 0: Fever Cough SARS-CoV-2 +ve	Day 7: Dexamethasone Remdesivir Tocilizumab	Day 13: Good clinical response. Discharge planning.	Day 15: Fever, rising inflammatory markers.	Day 16: New oxygen requirement	Day 16: Intensive care review. For ICU.
New consolida Indirect bronch		erformed.	Methicilli aureus	tory panel run d in Resistant <i>Stap</i> ycin added.	

Why do we perform antimicrobial susceptibility testing?

For the individual patient:

- Ensure that suitable antibiotics are prescribed.
- Monitor for the emergence of resistant pathogens within individuals.
- Support optimised delivery of treatment?

Institutional / regional level:

- Support policy / guidelines for empiric therapy (antibiograms).
- Support infection prevention & control practices.

Epidemiological:

• Monitor incidence / prevalence of resistance.

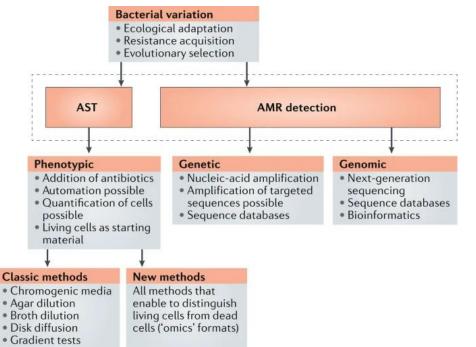
Laboratory diagnostic process

Sample processed

Plated and

Identification

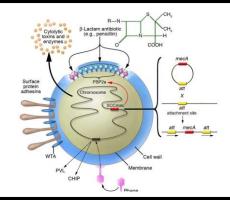
Gram stain Culture media Additional tests Analytical Profile Index (API) MALDI-TOF



Susceptibility

Disc diffusion E-test MIC

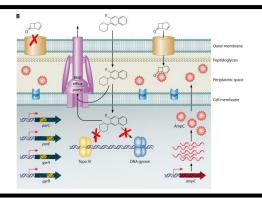
AST versus AMR gene detection



Comparing AST to AMR detection

AST	AMR detection
Universally applicable	Rapid
Mechanism independent	Confirms presence of resistance mechanisms
Phenotypic characterisation	
Therapeutic relevance	
Requires time for growth	Does not necessarily mean susceptibility / phenotype
Gene expression- dependent	Limited to certain antibiotics

Genotype versus phenotype


Methicillin Resistance Staphylococcus aureus (MRSA)

Resistance mechanism:

- mecA gene infers PBP-2a
 mutation
- Genotype = phenotype

Pseudomonas aeruginosa

Resistance mechanisms:

- Chromosomal ampC & DNA gyrase
- OprD porin downregulation
- RND efflux pump over-expression
- Genotype ≠ phenotype

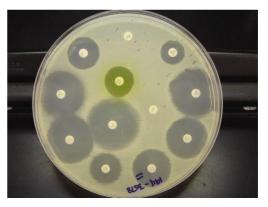
Phenotypic antimicrobial susceptibility testing

Broth dilution

Two-fold dilution method

MIC determination Gold standard

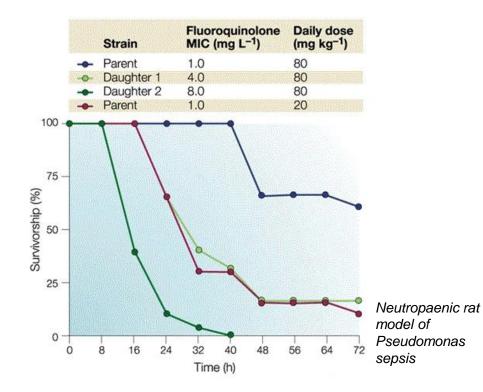
Time consuming Open to human error



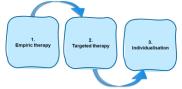
Antimicrobial gradient

E-test method

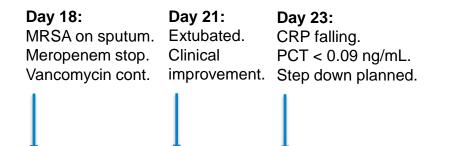
MIC determination Quick to set up


Some variation in MIC compared to broth

Disc diffusion


Disc method Disc diameter Quick, cheap, ease of use Qualitative "S/I/R"

Why is MIC important in practice?


Clear relationship between drug-exposure and response:

- Minimum inhibitory concentration (MIC): Smallest concentration of antimicrobial that inhibits the visible growth of an organism in vitro.
- A higher MIC will lessen the effect of the drug.
- A lower dose will also lessen the effect.
- Allows us to infer likelihood of treatment success / failure through assignment of clinical breakpoints.

Drusano, Nat Rev Mic 2004; Harris et al, JAMA 2018; Henderson et al. CID 2021

May 2022: Patient 3

Question on the ICU AMS round: What duration of therapy is required for our patient?

Treatment considerations – duration

"What is an appropriate duration of antimicrobial therapy for my patient?"

Where does evidence for duration of therapy come from?

Evidence based on clinical data :

- Mycobacterium tuberculosis
- Staphylococcus aureus
- Syndromic treatment

In vitro data:

• Time-kill analysis

Clinical judgement:

How the patient responds

Biomarkers:

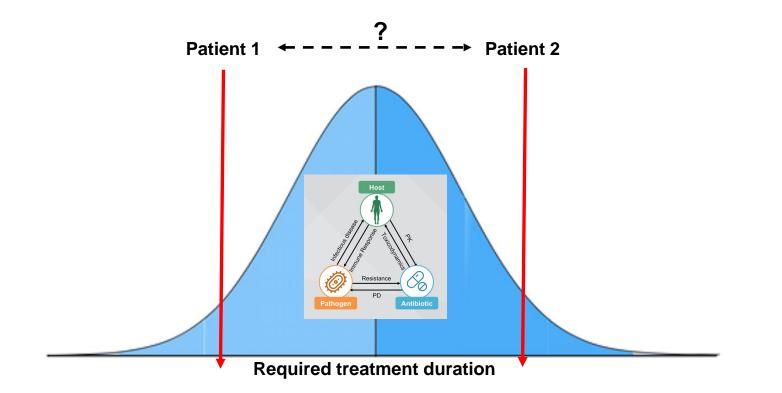
- C-reactive protein
- Procalcitonin

Short course antibiotic therapy

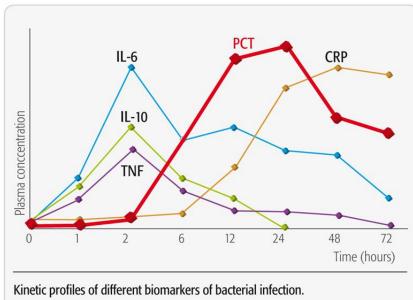
"Current evidence supports that each day of antibiotic therapy beyond the first confers a decreasing additional benefit to clinical cure while increasing the burden of harm..." (Spellberg, AIM; 2019)

45 RCT's & 2 meta-analyses explored short vs. traditional courses of therapy

- Shorter course therapy has non-inferior clinical outcomes
- · Reduced development of resistance and toxicity / side effects


Pneumonia: 8 RCTs

- No difference between 3-5 vs. 7-14 day courses in CAP
- No difference between 8 vs. 15 day courses in HAP
- 1 dose of ceftriaxone effective in some populations (Pertel et al. CID 2008)
- Shorter courses decrease resistance and toxicity / side effects (Vaughn et al. AIM 2019)


Short vs. traditional course antibiotic therapy

Diagnosis	Short (d)	Long (d)	Result
CAP	3 or 5	7, 8, or 10	Equal
HAP	7	10-15	Equal
VAP	8	15	Equal
Pyelo	7 or 5	14 or 10	Equal
Intra-abd	4	10	Equal
Gram Neg Bacteremia	7	14	Equal
AECB	<u><</u> 5	<u>></u> 7	Equal
Cellulitis	5-6	10	Equal
Osteo	42	84	Equal
Septic Arthritis	14	28	Equal
Neutropenic Fever	AF x 72 h	+ANC > 500	Equal 14

Treatment cessation decision making

Biomarkers used to support decision making

Adapted from Meisner M.¹

	CRP	РСТ	
Trigger	Acute phase response	Bacterial endotoxins	
Cytokines	IL-6, IL-1B	TNF-a, IL-1B, IL- 6, IL-8	
Production	Liver (APP)	Extra-thyroidal	
Kinetics	Inc: 6hrs Peak: 48hrs T1/2: 19hrs	Inc: 2-3hrs Peak: 12hrs T1/2: 24hrs	

Pepys et al. JCI 2003; Charles et al. CC 2009; Christ-grain et al. 2011

Procalcitonin guided cessation of therapy

PCT versus SOC on duration of therapy in critically ill patients

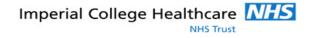
	Proc	alcito	nin	C	ontro	d l		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.1.2 Cessation									
Bloos 2016	7.3	6.7	552	7.3	6.7	537	11.4%	0.00 [-0.80, 0.80]	+
de Jong 2016	5.7	4.5	761	7.3	5.2	785	12.3%	-1.60 [-2.08, -1.12]	-
Deliberato 2013	15.5	8.3	42	17.3	10	39	2.8%	-1.80 [-5.82, 2.22]	
Hochreiter 2009	5.9	1.7	57	7.9	0.5	53	12.4%	-2.00 [-2.46, -1.54]	
Nobre 2008	12.3	7.2	39	13.5	7.2	40	4.0%	-1.20 [-4.38, 1.98]	
Oliveira 2013	8.1	3.7	49	7.2	3.5	45	8.8%	0.90 [-0.56, 2.36]	-
Schroeder 2009	6.6	1.1	14	8.3	0.7	13	11.7%	-1.70 [-2.39, -1.01]	-
Shehabi 2014	11.7	10.5	196	13	8.2	198	7.3%	-1.30 [-3.16, 0.56]	
Stolz 2009	10.6	7.6	51	16	9.9	50	3.5%	-5.40 [-8.85, -1.95]	· · · · ·
Subtotal (95% CI)			1761			1760	74.3%	-1.26 [-1.98, -0.54]	•
Test for overall effect: 2.1.3 Mixed	2 - 0.40	(i – c							
Annane 2013	4	2.3	30	43	1.6	28	10.6%	-0.30 [-1.31, 0.71]	+
Bouadma 2010	6.1	6	307		7.1	314	10.5%	-3.80 [-4.83, -2.77]	+
Ding 2013	8.7	6.6	33	14.5		35	4.6%	-5.80 [-8.64, -2.96]	
Subtotal (95% CI)			370			377	25.7%	-3.10 [-6.09, -0.11]	-
Heterogeneity: Tau ² =	6.19; Ch	ni² = 28	8.87, df	= 2 (P ·	< 0.0	0001); I	² = 93%		
Test for overall effect:	Z = 2.03	(P=0	0.04)						
Total (95% CI)			2131			2137	100.0%	-1.65 [-2.41, -0.89]	•
Heterogeneity: Tau ² =	1.16; Ch	ni² = 66	6.82, df	= 11 (P	< 0.0	00001);	l ² = 84%	H	
Test for overall effect:						- //		-2	20 -10 0 10 20 Favors PCT Favors control
Test for subgroup diffe					= 0.3	24), l ² =	27.7%		Favors PCT Favors control

Procalcitonin in COVID-19:

- CRP and PCT will be higher in patients with bacterial co-infection & higher risk of mortality.
- PCT has a good negative predictive value.
- PCT introduction into UK hospitals led to a **short term** reduction in antimicrobial consumption.

Summary (1)

- As the COVID-19 pandemic and available therapies have evolved, so have the challenges of diagnosing and managing bacterial infections.
- In general, bacterial infection in patients with COVID-19 pneumonitis was uncommon and antimicrobial prescribing was almost universal.
- Bacterial infection in COVID-19 pneumonitis is challenging to define and driven by a multitude of factors.
- Molecular diagnostics have significant potential to enhance diagnostics.
- These require an additional focus on stewardship and links with an understanding of human behaviour, culture, and context.


Summary (2)

- Antimicrobial Susceptibility Testing (AST) and Antimicrobial Resistance (AMR) gene detection provide different information.
- Genotype does not always = phenotype.
- AST can support individualisation of treatment in the septic patient.
- Antimicrobial cessation can be supported by the use of biomarkers, such as procalcitonin.
- In general short course antimicrobial therapy is appropriate and associated with lower rates of adverse events and emergence of drug resistance.
- Individualisation of antimicrobial therapy requires an understanding of prescriber decision making and an ability to support sustained stewardship of diagnostics and antimicrobials.

Acknowledgements

Imperial Biomedical Research Centre

Imperial College London

centre for antimicrobial optimisation

