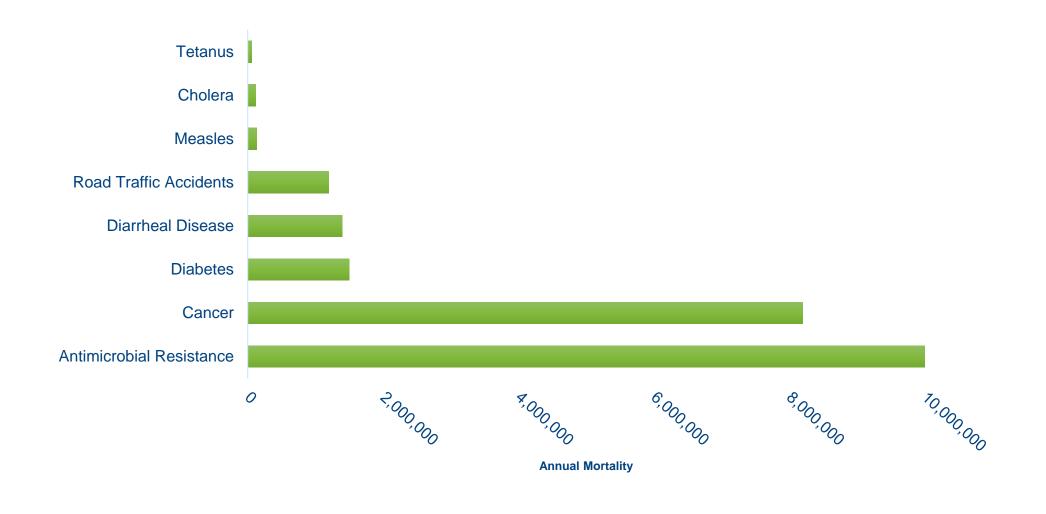


The Value of Diagnostics in Combating the Public Health Problem of Antimicrobial Resistance

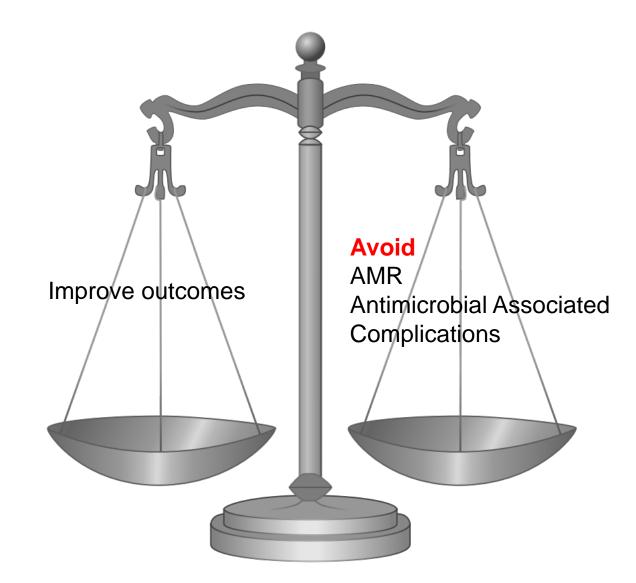
Dr. Tristan Timbrook, PharmD, BCPS


Director of Health Economics and Outcomes Research, Global Medical Affairs, bioMérieux Adjunct Assistant Professor, University of Utah College of Pharmacy, UT, USA

700,000

global antimicrobial resistance (AMR) related deaths/year

AMR ATTRIBUTED DEATHS IN 2050 COMPARED TO OTHER MAJOR CAUSES OF DEATH


STEWARDSHIP STARTS WITH DIAGNOSTICS

BALANCING EFFECTIVE ANTIBIOTICS WITH OVERUSE

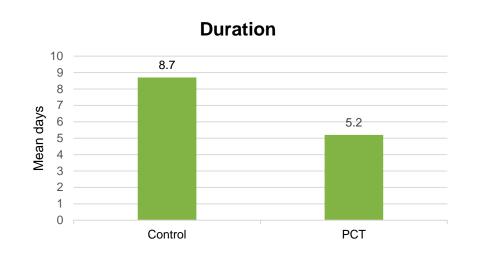
Empiric Antimicrobial Therapy

- Initiate broad spectrum therapy ASAP
- Antimicrobial stewardship to ensure appropriate targeted therapy once pathogen identified
- Varies by patient, location, AMR

DIAGNOSTICS IMPACT ON AMR

Technical Efficacy ↔ Diagnostic Accuracy Efficacy Sensitivity and Positive and negative Time to result Resource requirements Specificity predictive value Diagnostic Decision Efficacy Helpful in making diagnosis Changes probabilities in differential diagnosis Therapeutic Efficacy Therapy initiation, change, or discontinuation Procedure, imaging change after testing after testing Patient Outcome Efficacy Patients improved with test Morbidity and procedures Quality-adjusted life years compared to without avoided with testing impact Societal Efficacy

Cost-benefit or cost effectiveness impact from societal perspective


PATIENT-LEVEL AMR

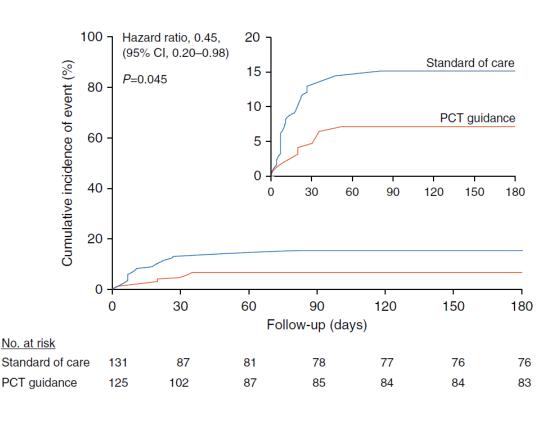
DECREASING ANTIBIOTIC EXPOSURE WITH PROCALCITONIN (PCT)

PCT-GUIDED THERAPY FOR ARTI

- N=14 RCT meta-analysis N=4221 patients
- Duration of antibiotic therapy ~4-day decrease

PCT-GUIDED THERAPY IN ICU

- N=15 RCT meta-analysis N=5486 patients
- Duration of antibiotic therapy for the first episode of infection ~2-day decrease


i I		Mean Difference	Mean Difference	
Study or Subgroup	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Bloos 2016	13.6%	0.00 [-1.19, 1.19]	+	
Bouadma 2010	15.3%	-3.80 [-4.83, -2.77]		
Hochreiter 2009	25.9%	-2.00 [-2.14, -1.86]	•	
Liu 2013	25.9%	-1.20 [-1.33, -1.07]	•	
Nobre 2008	3.0%	-3.50 [-6.94, -0.06]		
Schroeder 2009	3.6%	-2.00 [-5.07, 1.07]		
Stolz 2009	12.7%	-2.00 [-3.26, -0.74]	 -	
Total (95% CI)	100.0%	-1.84 [-2.47, -1.21]	•	
] 			-4 -2 0 2 4	
! 			Favours PCT guided Favours standard	
 -				

DECREASING AMR WITH BIOMARKERS

Procalcitonin to Reduce Long-Term Infection-associated Adverse Events in Sepsis

- Multicenter RCT of sepsis patients randomized 1:1 to PCT-guided discontinuation of antimicrobials or standard of care
- Primary outcome infection-associated adverse events at Day 180
 - Composite of the incidence of any new infection by C. difficile or MDRO, or any death from either
- Infection-associated adverse events occurred in 7.2% (9/125) vs 15.3% (20/131) (P = 0.045)
- Median length of antibiotic therapy 5 vs 10 days (P < 0.001)

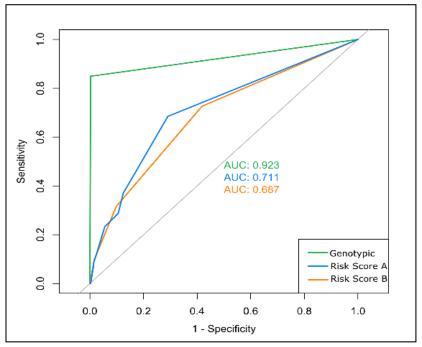
Infection-associated Adverse Events

DECREASING ANTIBIOTIC EXPOSURE WITH MULTIPLEX PCR

POCT PCR RCT

- BioFire® FilmArray® Respiratory (RP) Panel vs Standard of Care Testing
- N=720 patients with acute respiratory illness or fever during respiratory season
- Antibiotic duration (days)
 - Overall 7.2 vs 7.7, p=0.17
 - IECOPD 6.1 vs 8.0, p<0.01
 - Asthma 3.9 vs 5.3, p=0.04

IMPACT OF EARLIER DIAGNOSTICS


- Post-hoc analysis of Brendish et al. RCT
- Patients with BioFire RP Panel divided into those with TAT ≤1.6 or >1.6 hours
- Antibiotic duration (days)
 - Overall 2.9 vs 6.5, p<0.01
- ROC curve analysis
 - ≤1.6h had optimal sens/spec for both early discharge and early antibiotic discontinuation

USING DIAGNOSTICS TO MOVE BEYOND CLINICAL HEURISTICS FOR PREDICTING AMR

Minimizing Time to Optimal Antimicrobial Therapy

- Retrospective study of patients with Enterobacteriaceae bloodstream infections
- Comparing genotypic detections vs risk scores for predicting AMR
- Results
 - N=451; 16% resistance
 - 15% vs 63-71% CRO use in R cases
 - 0.3% vs 10-12% carbapenem use in CRO S cases

Genotypic vs Risk Scores for ESBL Prediction

POPULATION-LEVEL AMR

RAPID DIAGNOSTIC SURVEILLANCE

THE EFFECTS OF SOCIAL DISTANCING POLICIES ON NON-SARS-COV-2 RESPIRATORY PATHOGENS


- Detection rates were acquired from BioFire® Syndromic Trends across US facilities
- 15% reduction in total detection rate in March-April 2020
- Ability to monitor and report on public health measure impact in real-time

AMR SURVEILLANCE

AMR tracking for may offer the same ability in monitoring and reporting public health measures impact in real-time

PRN 059854 Rev 01./

ENABLED	UPCOMING				
Metropolitana de Santiago					
9	8				
La Araucanía					
1	-				
Valparaíso					
2	1				
Magallanes					
1	-				
Los Rios					
1	-				
Maule					
	1				
Bío Bío					
	2				
Los Lagos					
	2				
Enabled					

Upcoming

AUTOMATION & ANALYTICS FOR SURVEILLANCE

Vendor-agnostic approach supports national AMR insights for Chile

CHALLENGE

- Collecting data from any test or machine, regardless of the manufacturer
- Consolidating data from 40+ hospitals for surveillance of Antimicrobial Resistance
- Months of work in manual data aggregation and reporting in Excel

SOLUTION

- Automatic data collection and analysis
- Reports accessible to all hospitals
- Network-wide Antimicrobial Resistance reporting more than just once a year

IMPACT

- Reduced workload on staff
- Near real-time insights into the network's infectious disease landscape

We believe that a platform like CLARION helps us get better data for AMR, and better data means better clinical decisions.

Francisco Silva, MD and Microbiologist at University of Chile Clinical Hospital

LOOKING FORWARD COMBATING AMR WITH DIAGNOSTICS

CHALLENGES IN DIAGNOSTICS OUTSIDE OF RESOURCE-RICH SETTINGS

Clinical Infectious Diseases

Leveraging Existing and Soon-to-Be-Available Novel Diagnostics for Optimizing Outpatient Antibiotic Stewardship in Patients With Respiratory Tract Infections

Kelly A. Cawcutt,^{1,0} Robin Patel,² Jeff Gerber,³ Angela M. Caliendo,⁴ Sara E. Cosgrove,⁵ Elizabeth Dodds Ashley,⁶ Piero Garzaro,⁷ Melissa Miller,⁸ and Ebbing Lautenbach⁹; for the IDSA Research Summit "Leveraging Existing and Novel Diagnostics for Optimizing Outpatient Antibiotic Stewardship in Patients with Respiratory Tract Infections" Group

- IDSA research summit of experts Oct 2019
- Up to 50% of outpatient prescribing in US is inappropriate
- Optimal stewardship structure in outpatient settings is unclear
- Diversity of settings: ED, UCC, PCC, pharmacies, school-based clinics, telemedicine, home testing

Patient	Clinician	Organizational	Policy
Communication with clinician	Patient satisfaction scores and online reviews	Time-limited interactions	Prior authorizations
Capacity to carry out plan	Goal of good relationship with patients	Fast pace of clinic visits	Limited sick leave
Time away from school/work	Fewer interactions with other clinicians on cases	Limited ability to monitor patients after visit	Lack of dedicated resources
Expectations	Lack of availability and access to guidelines	Slow return of test results	Relative paucity of data regarding problem and/or solutions
Understanding of antibiotics	Communication with patients and families	Unclear whether patients see their results	Not required

CHALLENGES IN DIAGNOSTICS OUTSIDE OF RESOURCE-RICH SETTINGS

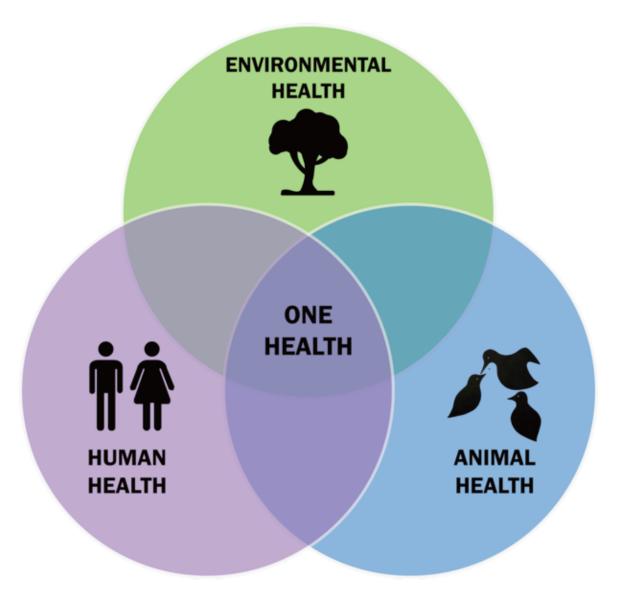
The Lancet Commission on diagnostics: transforming access to diagnostics

Kenneth A Fleming, Susan Horton, Michael L Wilson, Rifat Atun, Kristen DeStigter, John Flanigan, Shahin Sayed, Pierrick Adam, Bertha Aguilar, Savvas Andronikou, Catharina Boehme, William Cherniak, Annie NY Cheung, Bernice Dahn, Lluis Donoso-Bach, Tania Douglas, Patricia Garcia, Sarwat Hussain, Hari S Iyer, Mikashmi Kohli, Alain B Labrique, Lai-Meng Looi, John G Meara, John Nkengasong, Madhukar Pai, Kara-Lee Pool, Kaushik Ramaiya, Lee Schroeder, Devanshi Shah, Richard Sullivan, Bien-Soo Tan, Kamini Walia

- Emergence of extensively drug-resistant tuberculosis has now been reported from 131 countries
- COVID-19 pandemic has highlighted the critical role of diagnostics in healthcare
 - Without access to diagnostics, delivery of universal health coverage, antimicrobial resistance mitigation, and pandemic preparedness cannot be achieved
- Addressing the challenges of <u>antimicrobial resistance depends on good diagnostics</u>
- Because of the importance of antimicrobial resistance to healthcare systems globally, providing access to the necessary diagnostic tests must be a component of any national essential diagnostics list

47% of the global population has little to no access to diagnostics

POPULATION LEVEL IMPACT THROUGH COORDINATED **EFFORTS**

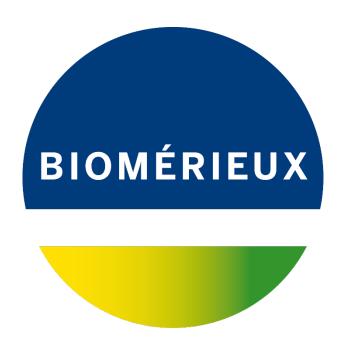

MINIREVIEW

Clinical Utility of Advanced Microbiology Testing Tools

Melissa B. Miller, Faranak Atrzadeh, Carey-Ann D. Burnham, Stephen Cavalieri, James Dunn, Stephen Jones, Taylor Dunn, Carey-Ann D. Burnham, Cavalieri, James Dunn, Charles Mathews, Peggy McNult, John Meduri, Chris Newhouse, Duane Newton, Michael Oberholzer, John Osiecki, David Pedersen, Nicole Sweeney, Natalie Whitfield, Doe Campos, on behalf of the ASM Clinical and Public Health Microbiology Committee and the ASM Corporate Council

- It may be **possible to eventually demonstrate outcomes** not only at the individual patient level but also at the population level.
- For example, there is potential to show that outcomes are improved via **public health benefits** that result from better antibiotic selection and community-acquired resistance management through the regional applied use of advanced diagnostic technologies.
- The full benefits of these technologies will only be realized once antimicrobial stewardship and operational improvements (e.g., strain tracking, hospital infection control surveillance, etc.) are applied in aggregate.
- This will **require a greater <u>collaborative/coordinated effort</u>** across multiple institutions potentially coordinated by a public health entity.

NEED UNITY IN ONE HEALTH APPROACH TO COMBAT AMR



19

OUR COLLABORATIVE APPROACH TO CONSULTING HELPS YOU ACHIEVE YOUR PROGRAM'S GOALS BY UNIFYING PEOPLE, PROCESS, AND TECHNOLOGY FOR BETTER OUTCOMES. CONTACT OUR INFECTIOUS DISEASE EXPERTS ABOUT OUR STEWARDSHIP CONSULTANCY PROGRAM.

HTTPS://GO.BIOMERIEUX.COM/STEWARDSHIP-CONSULTANCY-PROGRAM

PIONEERING DIAGNOSTICS